Rational points and derived equivalence

We give the first examples of derived equivalences between varieties defined over non-closed fields where one has a rational point and the other does not. We begin with torsors over Jacobians of curves over $\mathbb {Q}$ and $\mathbb {F}_q(t)$, and conclude with a pair of hyperkähler 4-folds over $\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2021-05, Vol.157 (5), p.1036-1050
Hauptverfasser: Addington, Nicolas, Antieau, Benjamin, Honigs, Katrina, Frei, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give the first examples of derived equivalences between varieties defined over non-closed fields where one has a rational point and the other does not. We begin with torsors over Jacobians of curves over $\mathbb {Q}$ and $\mathbb {F}_q(t)$, and conclude with a pair of hyperkähler 4-folds over $\mathbb {Q}$. The latter is independently interesting as a new example of a transcendental Brauer–Manin obstruction to the Hasse principle. The source code for the various computations is supplied as supplementary material with the online version of this article.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X21007089