Connection between Meteorological and Groundwater Drought with Copula-Based Bivariate Frequency Analysis
AbstractGroundwater is a major resource of freshwater that provides additional resilience to agricultural drought during rainfall deficit and also helps in understanding the nature of the hydrological drought risk of an area. This study investigated the response of groundwater drought to meteorologi...
Gespeichert in:
Veröffentlicht in: | Journal of hydrologic engineering 2021-07, Vol.26 (7) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AbstractGroundwater is a major resource of freshwater that provides additional resilience to agricultural drought during rainfall deficit and also helps in understanding the nature of the hydrological drought risk of an area. This study investigated the response of groundwater drought to meteorological drought and local aquifer properties by considering monthly groundwater levels of a tropical river basin in India. Further, bivariate frequency analysis was carried out for groundwater drought to develop severity–duration–frequency curves by considering the copula function. Long-term monthly groundwater levels were procured, and cluster analysis was performed on groundwater observations to classify the wells. Standardized Groundwater level Index (SGI) was used to evaluate groundwater drought for each cluster, and the same was compared with the meteorological drought of different association periods. The cluster analysis conveyed that wells can be grouped into three clusters optimally. Based on the comparison of groundwater drought with meteorological drought, it was inferred that SGI is well harmonized with the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in humid and semiarid regions, respectively. Analysis of hydraulic diffusivity with the autocorrelation structure of SGI emphasizes the crucial role of aquifer characteristics in local groundwater droughts. The results of joint and conditional return periods obtained from bivariate frequency analysis conveyed that high severity and high-duration droughts were more frequent in the well of Clusters 1 as well as Cluster 3 and comparatively less for the well of Cluster 2. The outcome of the study will be helpful to design proactive drought mitigation and preparedness strategies by considering conjunctive use of surface and groundwater. It also provides a framework to evaluate groundwater drought risk in other parts of the world. |
---|---|
ISSN: | 1084-0699 1943-5584 |
DOI: | 10.1061/(ASCE)HE.1943-5584.0002089 |