Study on lignin-free lignocellulosic biomass and PSF-PEG membrane compatibility

Lignocellulosic biomass was delignified by combining physical and chemical pretreatment techniques. Then, a polysulfone-polyethylene glycol blend, which was compatible with the lignin-free biomass (0 wt% to 3.0 wt%), was used to fabricate composite membranes. The presence of hydroxyl groups after th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2021-02, Vol.16 (1), p.1063-1075
Hauptverfasser: Amusa, Abiodun A., Ahmad, Abdul L., Adewole, Jimoh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lignocellulosic biomass was delignified by combining physical and chemical pretreatment techniques. Then, a polysulfone-polyethylene glycol blend, which was compatible with the lignin-free biomass (0 wt% to 3.0 wt%), was used to fabricate composite membranes. The presence of hydroxyl groups after the pretreatment was evaluated via Fourier transform infrared spectroscopy. The rheology of the polymer solutions was assessed via the viscometric method. Also, the hydrophobicity of the fabricated membranes was determined using contact angle and porosity measurements. The fabricated membranes with near superhydrophobic properties (a contact angle of approximately 140°) based on this study revealed that contactor systems and biomedical applications would benefit from this modification.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.16.1.1063-1075