Resistive Memory Process Optimization for High Resistance Switching Toward Scalable Analog Compute Technology for Deep Learning

We demonstrate a novel process for building a Resistive RAM (ReRAM) stack which reduces the forming voltage ( \text{V}_{\textit {form}} ) and increases the switching resistance, both characteristics that are important ingredients for the use of ReRAM in scalable analog compute for AI. Utilizing this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2021-05, Vol.42 (5), p.759-762
Hauptverfasser: Kim, Y., Seo, S.-C., Consiglio, S., Jamison, P., Higuchi, H., Rasch, M., Wu, E. Y., Kong, D., Saraf, I., Catano, C., Muralidhar, R., Nguyen, S., DeVries, S., Van der Straten, O., Sankarapandian, M., Pujari, R. N., Gasasira, A., Mcdermott, S. M., Miyazoe, H., Koty, D., Yang, Q., Yan, H., Clark, R., Tapily, K., Engelmann, S., Robison, R. R., Wajda, C., Mosden, A., Tsunomura, T., Soave, R., Saulnier, N., Haensch, W., Leusink, G., Biolsi, P., Narayanan, V., Ando, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a novel process for building a Resistive RAM (ReRAM) stack which reduces the forming voltage ( \text{V}_{\textit {form}} ) and increases the switching resistance, both characteristics that are important ingredients for the use of ReRAM in scalable analog compute for AI. Utilizing this process, we explore analog switching characteristics above 100k \Omega and demonstrate 4-bit programming at Rmax =1\text{M}\Omega . Utilizing the same writing characteristics, CIFAR-10 inference simulation shows 90% accuracy, comparable to the full precision model accuracy.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2021.3066181