On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity
In the present paper, we develop a direct approach to find nontrivial solutions and ground state solutions for the following planar Schrödinger equation: - Δ u + V ( x ) u = f ( x , u ) , x ∈ R 2 , u ∈ H 1 ( R 2 ) , where V ( x ) is an 1-periodic function with respect to x 1 and x 2 , 0 lies in a ga...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-06, Vol.60 (3), Article 95 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we develop a direct approach to find nontrivial solutions and ground state solutions for the following planar Schrödinger equation:
-
Δ
u
+
V
(
x
)
u
=
f
(
x
,
u
)
,
x
∈
R
2
,
u
∈
H
1
(
R
2
)
,
where
V
(
x
) is an 1-periodic function with respect to
x
1
and
x
2
, 0 lies in a gap of the spectrum of
-
Δ
+
V
, and
f
(
x
,
t
) behaves like
±
e
α
t
2
as
t
→
±
∞
uniformly on
x
∈
R
2
. Our theorems extend and improve the results of de Figueiredo-Miyagaki-Ruf (Calc Var Partial Differ Equ, 3(2):139–153, 1995), of de Figueiredo-do Ó-Ruf (Indiana Univ Math J, 53(4):1037–1054, 2004), of Alves-Souto-Montenegro (Calc Var Partial Differ Equ 43: 537–554, 2012), of Alves-Germano (J Differ Equ 265: 444–477, 2018) and of do Ó-Ruf (NoDEA 13: 167–192, 2006). |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-021-01963-1 |