A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency

Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-04, Vol.80 (10), p.14545-14564
Hauptverfasser: Karmakar, Priyabrata, Teng, Shyh Wei, Lu, Guojun, Zhang, Dengsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-020-10300-1