Spin cat states in ferromagnetic insulators

Generating nonclassical states in macroscopic systems is a long-standing challenge. A promising platform in the context of this quest are novel hybrid systems based on magnetic dielectrics, where photons can couple strongly and coherently to magnetic excitations, although a nonclassical state therei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-03, Vol.103 (10), p.1, Article L100403
Hauptverfasser: Sharma, Sanchar, Bittencourt, Victor A. S. V., Karenowska, Alexy D., Kusminskiy, Silvia Viola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generating nonclassical states in macroscopic systems is a long-standing challenge. A promising platform in the context of this quest are novel hybrid systems based on magnetic dielectrics, where photons can couple strongly and coherently to magnetic excitations, although a nonclassical state therein is yet to be observed. We propose a scheme to generate a magnetization cat state, i.e., a quantum superposition of two distinct magnetization directions, using a conventional setup of a macroscopic ferromagnet in a microwave cavity. Our scheme uses the ground state of an ellipsoid shaped magnet, which displays anisotropic quantum fluctuations akin to a squeezed vacuum. The magnetization collapses to a cat state by either a single photon or a parity measurement of the microwave cavity state. We find that a cat state with two components separated by ∼ 5 ℏ is feasible and briefly discuss potential experimental setups that can achieve it.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.103.L100403