Oxidation and Corrosion properties of a Novel Al15Ti30Si30Mo15Ni10 High Entropy Alloy fabricated by Spark Plasma Sintering Technology

The need for new advanced high temperature materials is in high demand. High Entropy Alloy (HEAs) has been described to possess excellent mechanical oxidation and good corrosion resistance properties even far above the ambient temperature. Attempts are made in this research to study the corrosion, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2021-04, Vol.1107 (1)
Hauptverfasser: Kanyane, L R, Popoola, API, Malatji, N, Mthisi, A, Fayomi, OSI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need for new advanced high temperature materials is in high demand. High Entropy Alloy (HEAs) has been described to possess excellent mechanical oxidation and good corrosion resistance properties even far above the ambient temperature. Attempts are made in this research to study the corrosion, oxidation, microhardness and densification properties of Al15Ti30Si30Mo15Ni10 HEA produced by spark plasma sintering (SPS) for high temperature applications. In addition, the effects of SPS temperature (800, 900 and 1000°C) on the microstructure and phase formation of the developed HEA were reported. The microstructural modification and phases present were examined using the scanning electron microscope (SEM) equipped with the energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD) respectively. Ordered FCC and BCC systems were identified along with clearly defined crystal lattice along with Mo, Ti and Si rich regions were observed. No pores or cracks were observed from the microstructures. Densification of 98.8% accompanied with microhardness of 1445.29HV was achieved for both HEA at 1000°C. The Al15Ti30Si30Mo15Ni10 HEA fabricated at 1000°C displayed a higher polarization value of 3477 Ω.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/1107/1/012233