Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection

In this work, we are concerned with the stability and convergence analysis of the second-order backward difference formula (BDF2) with variable steps for the molecular beam epitaxial model without slope selection. We first show that the variable-step BDF2 scheme is convex and uniquely solvable under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2021-05, Vol.64 (5), p.887-902
Hauptverfasser: Liao, Hong-Lin, Song, Xuehua, Tang, Tao, Zhou, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we are concerned with the stability and convergence analysis of the second-order backward difference formula (BDF2) with variable steps for the molecular beam epitaxial model without slope selection. We first show that the variable-step BDF2 scheme is convex and uniquely solvable under a weak time-step constraint. Then we show that it preserves an energy dissipation law if the adjacent time-step ratios satisfy r k := τ k / τ k −1 < 3.561. Moreover, with a novel discrete orthogonal convolution kernels argument and some new estimates on the corresponding positive definite quadratic forms, the L 2 norm stability and rigorous error estimates are established, under the same step-ratio constraint that ensures the energy stability, i.e., 0 < r k < 3.561. This is known to be the best result in the literature. We finally adopt an adaptive time-stepping strategy to accelerate the computations of the steady state solution and confirm our theoretical findings by numerical examples.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-020-1817-4