Microstructure Cluster Analysis with Transfer Learning and Unsupervised Learning

We apply computer vision and machine learning methods to analyze two datasets of microstructural images. A transfer learning pipeline utilizes the fully connected layer of a pre-trained convolutional neural network as the image representation. An unsupervised learning method uses the image represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrating materials and manufacturing innovation 2018-09, Vol.7 (3), p.148-156
Hauptverfasser: Kitahara, Andrew R., Holm, Elizabeth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply computer vision and machine learning methods to analyze two datasets of microstructural images. A transfer learning pipeline utilizes the fully connected layer of a pre-trained convolutional neural network as the image representation. An unsupervised learning method uses the image representations to discover visually distinct clusters of images within two datasets. A minimally supervised clustering approach classifies micrographs into visually similar groups. This approach successfully classifies images both in a dataset of surface defects in steel, where the image classes are visually distinct and in a dataset of fracture surfaces that humans have difficulty classifying. We find that the unsupervised, transfer learning method gives results comparable to fully supervised, custom-built approaches.
ISSN:2193-9764
2193-9772
DOI:10.1007/s40192-018-0116-9