A Multimodel Approach for Complex Systems Modeling based on Classification Algorithms
In this paper, a new multimodel approach for complex systems modeling based on classification algorithms is presented. It requires firstly the determination of the model-base. For this, the number of models is selected via a neural network and a rival penalized competitive learning (RPCL), and the o...
Gespeichert in:
Veröffentlicht in: | International journal of computers, communications & control communications & control, 2014-09, Vol.7 (4), p.645 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new multimodel approach for complex systems modeling based on classification algorithms is presented. It requires firstly the determination of the model-base. For this, the number of models is selected via a neural network and a rival penalized competitive learning (RPCL), and the operating clusters are identified by using the fuzzy K-means algorithm. The obtained results are then exploited for the parametric identification of the models. The second step consists in validating the proposed model-base by using the adequate method of validity computation. Two examples are presented in this paper which show the efficiency of the proposed approach. |
---|---|
ISSN: | 1841-9836 1841-9844 |
DOI: | 10.15837/ijccc.2012.4.1364 |