A Multimodel Approach for Complex Systems Modeling based on Classification Algorithms

In this paper, a new multimodel approach for complex systems modeling based on classification algorithms is presented. It requires firstly the determination of the model-base. For this, the number of models is selected via a neural network and a rival penalized competitive learning (RPCL), and the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2014-09, Vol.7 (4), p.645
Hauptverfasser: Elfelly, Nesrine, Dieulot, Jean-Yves, Benrejeb, Mohamed, Borne, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new multimodel approach for complex systems modeling based on classification algorithms is presented. It requires firstly the determination of the model-base. For this, the number of models is selected via a neural network and a rival penalized competitive learning (RPCL), and the operating clusters are identified by using the fuzzy K-means algorithm. The obtained results are then exploited for the parametric identification of the models. The second step consists in validating the proposed model-base by using the adequate method of validity computation. Two examples are presented in this paper which show the efficiency of the proposed approach.
ISSN:1841-9836
1841-9844
DOI:10.15837/ijccc.2012.4.1364