Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices

Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of cluste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2014-06, Vol.9 (3), p.370
Hauptverfasser: Zhou, Kaile, Ding, Shuai, Fu, Chao, Yang, Shanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 370
container_title International journal of computers, communications & control
container_volume 9
creator Zhou, Kaile
Ding, Shuai
Fu, Chao
Yang, Shanlin
description Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of clusters. In this paper, we present anextensive comparison of ten well-known CVIs for fuzzy clustering. Then we extendtraditional single CVIs by introducing the weighted method and propose a weightedsummation type of CVI (WSCVI). Experiments on nine synthetic data sets and fourreal-world UCI data sets demonstrate that no one CVI performs better on all datasets than others. Nevertheless, the proposed WSCVI is more effective by properlysetting the weights.
doi_str_mv 10.15837/ijccc.2014.3.237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518380371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518380371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-d682d97011a5d04adb746d3e323dfd9666d10024934ad87ec58fdb2f3372fc113</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpA3CzxDnB9jqxc0QRpZUqcaDA0XJtB1w1P9jJIX160haxl1nNjHalD6F7SlKaSRCPfm-MSRmhPIWUgbhCMyo5TQrJ-fX_DvktWsS4J9MAk0RkM7Qq27rTwce2wbqx-NP5r-_eWfw21LXu_WRvx87htsLL4XgccXkYYu8C_tAHb30_4nVjvXHxDt1U-hDd4k_n6H35vC1Xyeb1ZV0-bRLDCPSJzSWzhSCU6swSru1O8NyCAwa2skWe55YSwngBUyaFM5ms7I5VAIJVhlKYo4fL3S60P4OLvdq3Q2iml4plVIIkIE4temmZ0MYYXKW64GsdRkWJOjNTZ2bqxEyBmpjBLzSlX3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518380371</pqid></control><display><type>article</type><title>Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Kaile ; Ding, Shuai ; Fu, Chao ; Yang, Shanlin</creator><creatorcontrib>Zhou, Kaile ; Ding, Shuai ; Fu, Chao ; Yang, Shanlin</creatorcontrib><description>Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of clusters. In this paper, we present anextensive comparison of ten well-known CVIs for fuzzy clustering. Then we extendtraditional single CVIs by introducing the weighted method and propose a weightedsummation type of CVI (WSCVI). Experiments on nine synthetic data sets and fourreal-world UCI data sets demonstrate that no one CVI performs better on all datasets than others. Nevertheless, the proposed WSCVI is more effective by properlysetting the weights.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2014.3.237</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Clustering ; Datasets</subject><ispartof>International journal of computers, communications &amp; control, 2014-06, Vol.9 (3), p.370</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-d682d97011a5d04adb746d3e323dfd9666d10024934ad87ec58fdb2f3372fc113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27906,27907</link.rule.ids></links><search><creatorcontrib>Zhou, Kaile</creatorcontrib><creatorcontrib>Ding, Shuai</creatorcontrib><creatorcontrib>Fu, Chao</creatorcontrib><creatorcontrib>Yang, Shanlin</creatorcontrib><title>Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices</title><title>International journal of computers, communications &amp; control</title><description>Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of clusters. In this paper, we present anextensive comparison of ten well-known CVIs for fuzzy clustering. Then we extendtraditional single CVIs by introducing the weighted method and propose a weightedsummation type of CVI (WSCVI). Experiments on nine synthetic data sets and fourreal-world UCI data sets demonstrate that no one CVI performs better on all datasets than others. Nevertheless, the proposed WSCVI is more effective by properlysetting the weights.</description><subject>Clustering</subject><subject>Datasets</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kM1OwzAQhC0EElXpA3CzxDnB9jqxc0QRpZUqcaDA0XJtB1w1P9jJIX160haxl1nNjHalD6F7SlKaSRCPfm-MSRmhPIWUgbhCMyo5TQrJ-fX_DvktWsS4J9MAk0RkM7Qq27rTwce2wbqx-NP5r-_eWfw21LXu_WRvx87htsLL4XgccXkYYu8C_tAHb30_4nVjvXHxDt1U-hDd4k_n6H35vC1Xyeb1ZV0-bRLDCPSJzSWzhSCU6swSru1O8NyCAwa2skWe55YSwngBUyaFM5ms7I5VAIJVhlKYo4fL3S60P4OLvdq3Q2iml4plVIIkIE4temmZ0MYYXKW64GsdRkWJOjNTZ2bqxEyBmpjBLzSlX3M</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Zhou, Kaile</creator><creator>Ding, Shuai</creator><creator>Fu, Chao</creator><creator>Yang, Shanlin</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140601</creationdate><title>Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices</title><author>Zhou, Kaile ; Ding, Shuai ; Fu, Chao ; Yang, Shanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-d682d97011a5d04adb746d3e323dfd9666d10024934ad87ec58fdb2f3372fc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Datasets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kaile</creatorcontrib><creatorcontrib>Ding, Shuai</creatorcontrib><creatorcontrib>Fu, Chao</creatorcontrib><creatorcontrib>Yang, Shanlin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications &amp; control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kaile</au><au>Ding, Shuai</au><au>Fu, Chao</au><au>Yang, Shanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices</atitle><jtitle>International journal of computers, communications &amp; control</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>370</spage><pages>370-</pages><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of clusters. In this paper, we present anextensive comparison of ten well-known CVIs for fuzzy clustering. Then we extendtraditional single CVIs by introducing the weighted method and propose a weightedsummation type of CVI (WSCVI). Experiments on nine synthetic data sets and fourreal-world UCI data sets demonstrate that no one CVI performs better on all datasets than others. Nevertheless, the proposed WSCVI is more effective by properlysetting the weights.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2014.3.237</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1841-9836
ispartof International journal of computers, communications & control, 2014-06, Vol.9 (3), p.370
issn 1841-9836
1841-9844
language eng
recordid cdi_proquest_journals_2518380371
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Clustering
Datasets
title Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20and%20Weighted%20Summation%20Type%20of%20Fuzzy%20Cluster%20Validity%20Indices&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=Zhou,%20Kaile&rft.date=2014-06-01&rft.volume=9&rft.issue=3&rft.spage=370&rft.pages=370-&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2014.3.237&rft_dat=%3Cproquest_cross%3E2518380371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518380371&rft_id=info:pmid/&rfr_iscdi=true