Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices

Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of cluste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2014-06, Vol.9 (3), p.370
Hauptverfasser: Zhou, Kaile, Ding, Shuai, Fu, Chao, Yang, Shanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of clusters. In this paper, we present anextensive comparison of ten well-known CVIs for fuzzy clustering. Then we extendtraditional single CVIs by introducing the weighted method and propose a weightedsummation type of CVI (WSCVI). Experiments on nine synthetic data sets and fourreal-world UCI data sets demonstrate that no one CVI performs better on all datasets than others. Nevertheless, the proposed WSCVI is more effective by properlysetting the weights.
ISSN:1841-9836
1841-9844
DOI:10.15837/ijccc.2014.3.237