Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices
Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of cluste...
Gespeichert in:
Veröffentlicht in: | International journal of computers, communications & control communications & control, 2014-06, Vol.9 (3), p.370 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finding the optimal cluster number and validating the partition resultsof a data set are difficult tasks since clustering is an unsupervised learning process.Cluster validity index (CVI) is a kind of criterion function for evaluating the clusteringresults and determining the optimal number of clusters. In this paper, we present anextensive comparison of ten well-known CVIs for fuzzy clustering. Then we extendtraditional single CVIs by introducing the weighted method and propose a weightedsummation type of CVI (WSCVI). Experiments on nine synthetic data sets and fourreal-world UCI data sets demonstrate that no one CVI performs better on all datasets than others. Nevertheless, the proposed WSCVI is more effective by properlysetting the weights. |
---|---|
ISSN: | 1841-9836 1841-9844 |
DOI: | 10.15837/ijccc.2014.3.237 |