Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing
In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural n...
Gespeichert in:
Veröffentlicht in: | International Journal of Computers Communications & Control 2015-04, Vol.10 (2), p.188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 188 |
container_title | International Journal of Computers Communications & Control |
container_volume | 10 |
creator | Han, Baoru Li, Jingbing Li, Yujia |
description | In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural network, three-dimensional discrete cosine transform and difference hashing, and becomes a kind of robust zero-watermarking algorithm. Firstly, a new kind of Legendre chaotic neural network is used to generate chaotic sequences, which causes the original watermarking image scrambling. Secondly, it uses three-dimensional discrete cosine transform to the original medical volume data, and the perception of the low frequency coefficient invariance in the three-dimensional discrete cosine transform domain is utilized to extract the first 4*5*4 coefficient in order to form characteristic matrix (16*5). Then, the difference hashing algorithm is used to extract a robust perceptual hashing value which is a binary sequence, with the length being 64-bit. Finally, the hashing value serves as the image features to construct the robust zero-watermarking. The results show that the algorithm can resist the attack, with good robustness and high security. |
doi_str_mv | 10.15837/ijccc.2015.2.1752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518368527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518368527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-60a9e86b47ba6b428cecd24f316040cd11ad6b83327912b69c1131eb9bb485203</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EElXpCzBZYk7w2bHjjKUFilTUBRhYLNtx2pQ0LnYqxNvjUgaWuxu-u9P_IXQNJAcuWXnbbq21OSXAc5pDyekZGoEsIKskE-f_5ks0ibE1hFFGuJDlCK3eXfDZlx5c2Onw0fZrPO3WPrTDZocbH_Czq1urO_zmu8PO4bkeNL7T0dXY93jeNo0LrrcOL3TcpO0rdNHoLrrJXx-j14f7l9kiW64en2bTZWZpyYdMEF05KUxRGp0qldbZmhYNA0EKYmsAXQsjGaNlBdSIygIwcKYyppCcEjZGN6e7--A_Dy4OausPoU8vFeWQoiaqTBQ9UTb4GINr1D60Kee3AqJ-3alfd-roTlF1dMd-AM74Yfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518368527</pqid></control><display><type>article</type><title>Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Han, Baoru ; Li, Jingbing ; Li, Yujia</creator><creatorcontrib>Han, Baoru ; Li, Jingbing ; Li, Yujia</creatorcontrib><description>In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural network, three-dimensional discrete cosine transform and difference hashing, and becomes a kind of robust zero-watermarking algorithm. Firstly, a new kind of Legendre chaotic neural network is used to generate chaotic sequences, which causes the original watermarking image scrambling. Secondly, it uses three-dimensional discrete cosine transform to the original medical volume data, and the perception of the low frequency coefficient invariance in the three-dimensional discrete cosine transform domain is utilized to extract the first 4*5*4 coefficient in order to form characteristic matrix (16*5). Then, the difference hashing algorithm is used to extract a robust perceptual hashing value which is a binary sequence, with the length being 64-bit. Finally, the hashing value serves as the image features to construct the robust zero-watermarking. The results show that the algorithm can resist the attack, with good robustness and high security.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2015.2.1752</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Algorithms ; Depth perception ; Discrete cosine transform ; Domains ; Hash based algorithms ; Neural networks ; Robustness ; Security ; Watermarking</subject><ispartof>International Journal of Computers Communications & Control, 2015-04, Vol.10 (2), p.188</ispartof><rights>2015. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-60a9e86b47ba6b428cecd24f316040cd11ad6b83327912b69c1131eb9bb485203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Han, Baoru</creatorcontrib><creatorcontrib>Li, Jingbing</creatorcontrib><creatorcontrib>Li, Yujia</creatorcontrib><title>Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing</title><title>International Journal of Computers Communications & Control</title><description>In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural network, three-dimensional discrete cosine transform and difference hashing, and becomes a kind of robust zero-watermarking algorithm. Firstly, a new kind of Legendre chaotic neural network is used to generate chaotic sequences, which causes the original watermarking image scrambling. Secondly, it uses three-dimensional discrete cosine transform to the original medical volume data, and the perception of the low frequency coefficient invariance in the three-dimensional discrete cosine transform domain is utilized to extract the first 4*5*4 coefficient in order to form characteristic matrix (16*5). Then, the difference hashing algorithm is used to extract a robust perceptual hashing value which is a binary sequence, with the length being 64-bit. Finally, the hashing value serves as the image features to construct the robust zero-watermarking. The results show that the algorithm can resist the attack, with good robustness and high security.</description><subject>Algorithms</subject><subject>Depth perception</subject><subject>Discrete cosine transform</subject><subject>Domains</subject><subject>Hash based algorithms</subject><subject>Neural networks</subject><subject>Robustness</subject><subject>Security</subject><subject>Watermarking</subject><issn>1841-9836</issn><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkLFOwzAQhi0EElXpCzBZYk7w2bHjjKUFilTUBRhYLNtx2pQ0LnYqxNvjUgaWuxu-u9P_IXQNJAcuWXnbbq21OSXAc5pDyekZGoEsIKskE-f_5ks0ibE1hFFGuJDlCK3eXfDZlx5c2Onw0fZrPO3WPrTDZocbH_Czq1urO_zmu8PO4bkeNL7T0dXY93jeNo0LrrcOL3TcpO0rdNHoLrrJXx-j14f7l9kiW64en2bTZWZpyYdMEF05KUxRGp0qldbZmhYNA0EKYmsAXQsjGaNlBdSIygIwcKYyppCcEjZGN6e7--A_Dy4OausPoU8vFeWQoiaqTBQ9UTb4GINr1D60Kee3AqJ-3alfd-roTlF1dMd-AM74Yfs</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Han, Baoru</creator><creator>Li, Jingbing</creator><creator>Li, Yujia</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150401</creationdate><title>Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing</title><author>Han, Baoru ; Li, Jingbing ; Li, Yujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-60a9e86b47ba6b428cecd24f316040cd11ad6b83327912b69c1131eb9bb485203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Depth perception</topic><topic>Discrete cosine transform</topic><topic>Domains</topic><topic>Hash based algorithms</topic><topic>Neural networks</topic><topic>Robustness</topic><topic>Security</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Baoru</creatorcontrib><creatorcontrib>Li, Jingbing</creatorcontrib><creatorcontrib>Li, Yujia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International Journal of Computers Communications & Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Baoru</au><au>Li, Jingbing</au><au>Li, Yujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing</atitle><jtitle>International Journal of Computers Communications & Control</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>188</spage><pages>188-</pages><issn>1841-9836</issn><eissn>1841-9836</eissn><eissn>1841-9844</eissn><abstract>In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural network, three-dimensional discrete cosine transform and difference hashing, and becomes a kind of robust zero-watermarking algorithm. Firstly, a new kind of Legendre chaotic neural network is used to generate chaotic sequences, which causes the original watermarking image scrambling. Secondly, it uses three-dimensional discrete cosine transform to the original medical volume data, and the perception of the low frequency coefficient invariance in the three-dimensional discrete cosine transform domain is utilized to extract the first 4*5*4 coefficient in order to form characteristic matrix (16*5). Then, the difference hashing algorithm is used to extract a robust perceptual hashing value which is a binary sequence, with the length being 64-bit. Finally, the hashing value serves as the image features to construct the robust zero-watermarking. The results show that the algorithm can resist the attack, with good robustness and high security.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2015.2.1752</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1841-9836 |
ispartof | International Journal of Computers Communications & Control, 2015-04, Vol.10 (2), p.188 |
issn | 1841-9836 1841-9836 1841-9844 |
language | eng |
recordid | cdi_proquest_journals_2518368527 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Depth perception Discrete cosine transform Domains Hash based algorithms Neural networks Robustness Security Watermarking |
title | Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-watermarking%20Algorithm%20for%20Medical%20Volume%20Data%20Based%20on%20Difference%20Hashing&rft.jtitle=International%20Journal%20of%20Computers%20Communications%20&%20Control&rft.au=Han,%20Baoru&rft.date=2015-04-01&rft.volume=10&rft.issue=2&rft.spage=188&rft.pages=188-&rft.issn=1841-9836&rft.eissn=1841-9836&rft_id=info:doi/10.15837/ijccc.2015.2.1752&rft_dat=%3Cproquest_cross%3E2518368527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518368527&rft_id=info:pmid/&rfr_iscdi=true |