Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing

In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Computers Communications & Control 2015-04, Vol.10 (2), p.188
Hauptverfasser: Han, Baoru, Li, Jingbing, Li, Yujia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural network, three-dimensional discrete cosine transform and difference hashing, and becomes a kind of robust zero-watermarking algorithm. Firstly, a new kind of Legendre chaotic neural network is used to generate chaotic sequences, which causes the original watermarking image scrambling. Secondly, it uses three-dimensional discrete cosine transform to the original medical volume data, and the perception of the low frequency coefficient invariance in the three-dimensional discrete cosine transform domain is utilized to extract the first 4*5*4 coefficient in order to form characteristic matrix (16*5). Then, the difference hashing algorithm is used to extract a robust perceptual hashing value which is a binary sequence, with the length being 64-bit. Finally, the hashing value serves as the image features to construct the robust zero-watermarking. The results show that the algorithm can resist the attack, with good robustness and high security.
ISSN:1841-9836
1841-9836
1841-9844
DOI:10.15837/ijccc.2015.2.1752