Modeling Emergence of Sterile Oat (Avena sterilis ssp. Ludoviciana) under Semiarid Conditions

Winter wild oat [Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne; referred to as A. sterilis here] is one of the major weed species of the Avena genus, given its high competitive ability to infest cereal crops worldwide, with special concern in Spain. A nine-location field experiment was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed science 2021-05, Vol.69 (3), p.341-352
Hauptverfasser: Sousa-Ortega, Carlos, Royo-Esnal, Aritz, Loureiro, Iñigo, Marí, Ana I., Lezáun, Juan A., Cordero, Fernando, Saavedra, Milagros, Paramio, José A., Fernández, José L., Torra, Joel, Urbano, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Winter wild oat [Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne; referred to as A. sterilis here] is one of the major weed species of the Avena genus, given its high competitive ability to infest cereal crops worldwide, with special concern in Spain. A nine-location field experiment was established across Spain where a total of 400 A. sterilis seeds per location were sowed in four replicates in autumn 2016 to monitor the emergence during two growing seasons in dryland conditions. The data were used to test the prediction ability of previously published thermal (TT) and hydrothermal time (HTT) models and to develop new models, if required. Overall, the average percentage of emergence was 30% during the first season and 21% during the second season. In both seasons, the main emergence flush occurred between November and February. According to the phenological stage, A. sterilis achieved the tillering earlier in southern sites, between November 25 and the end of December, compared with northern sites, where this stage was reached at the end of January. The newly developed model described the emergence with precision, using three cardinal temperatures to estimate the TT. The three cardinal points were established at –1.0, 5.8, and 18.0 C for base (Tb), optimum (To), and ceiling temperature (Tc), while the base water potential (Ψb) was established at –0.2 MPa for the HTT estimation. This study contributes to improving prediction of the emergence of A. sterilis and provides knowledge for decision support systems (DSS) for the control of this weed.
ISSN:0043-1745
1550-2759
DOI:10.1017/wsc.2021.10