Critical review towards thermal management systems of lithium-ion batteries in electric vehicle with its electronic control unit and assessment tools

Lithium-ion batteries are facing difficulties in an aspect of protection towards battery thermal safety issues which leads to performance degradation or thermal runaway. To negate these issues an effective battery thermal management system is absolute pre-requisite to safeguard the lithium-ion batte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Part D: Journal of Automobile Engineering, 2021-06, Vol.235 (7), p.1783-1807
Hauptverfasser: Kannan, C, Vignesh, R, Karthick, C, Ashok, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-ion batteries are facing difficulties in an aspect of protection towards battery thermal safety issues which leads to performance degradation or thermal runaway. To negate these issues an effective battery thermal management system is absolute pre-requisite to safeguard the lithium-ion batteries. In this context to support the future endeavours and to improvise battery thermal management system (BTMS) design and its operation the article reveals on three aspects through the analysis of scientific literatures. First, this paper collates the present research progress and status of various battery management strategies employed to lithium-ion batteries. Further, to promote stable and efficient BTMS operation as an initiation the extensive attention is paid towards roles of BTMS electronic control unit and also presented the essential functionality need to consider for designing best BTMS control strategy. Finally, elucidates the various unconventional assessment tools can be employed to recognize the suitable thermal management technique and also for establish optimum BTMS operation based on requirements. From the experience of this article additionally delivers some of the research gaps identified and the essential areas need to focus for the development of superior lithium-ion BTMS technology. All the contents reveal in this article will hopefully assist to the design commercially suitable effective BTMS technology especially for electro-mobility application.
ISSN:0954-4070
2041-2991
DOI:10.1177/0954407020982865