Suggested key variables for assessment of soil quality in urban roadside tree systems

Purpose Urban roadside soils are important growth media for roadside trees. However, typical assessment variables are limited in describing the characteristics of roadside soils. We assessed the characteristics of roadside soils using the pre- and new suggested variables and recommended optimal soil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of soils and sediments 2021-05, Vol.21 (5), p.2130-2140
Hauptverfasser: Kim, You Jin, Yoo, Gayoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Urban roadside soils are important growth media for roadside trees. However, typical assessment variables are limited in describing the characteristics of roadside soils. We assessed the characteristics of roadside soils using the pre- and new suggested variables and recommended optimal soil variables that are representative of roadside tree health. Materials and methods Seventy-three roadside soils were collected for measurement, while six urban forest soils were prepared as a control. Samples were used to evaluate both pre-suggested and new variables. The former included bulk density, penetration resistance (PR), pH, organic matter (OM), fluorescein diacetate (FDA) activity, and respiration. To improve the pre-suggested variables, we modified the bulk density using PR and investigated the elemental ratios and stable isotopic signatures of particulate organic matter (POM). Two criteria were used to select the variables for urban roadside soils: (1) the variable should identify distinct characteristics of roadside and urban forest soils and (2) the variable should have a high correlation with urban tree health variables: leaf chlorophyll content and tree vigor. Results and discussion The bulk density measured using the conventional method underestimated soil compaction because obtaining intact cores was challenging. The modified bulk density (BD modified ) obtained from the soil PR is suggested to better represent soil compaction. The roadside soils were affected by de-icing materials, construction debris, and atmospheric alkali particles, which increased the soil pH. The unexpectedly higher OM contents in the roadside soils, where tree origins are limited, possibly due to soil OM sources such as vehicular emissions, animal excreta, and sewer flooding. These OM sources may alter the C/H ratio (POM-C/H) and the stable isotopic signature of POM, leading to OM quality changes. Soil respiration better reflected the changes in the microbial activity of the roadside soils, rather than FDA activity. The newly suggested soil variables, BD mofieid , pH, POM-C/H, and RES, were significantly correlated with leaf chlorophyll content and tree vigor ( P  
ISSN:1439-0108
1614-7480
DOI:10.1007/s11368-020-02827-5