Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs

Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of physics 2021-06, Vol.51 (3), p.803-812
Hauptverfasser: Rocca, M. C., Plastino, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 3
container_start_page 803
container_title Brazilian journal of physics
container_volume 51
creator Rocca, M. C.
Plastino, A.
description Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.
doi_str_mv 10.1007/s13538-021-00882-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516892490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516892490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a6c70804c163a69ad678755814353a3c046ce8b047ba04a9a83a1ee8aa558bbe3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGsZM4S1TxJ1VCiHbFwpo4Lk2V2sVOhNoV1-B6nASXILFjNdLovTdvPkLOGVwygOIqMJ5xSSFlFEDKlG4PyIjlhaRCCHlIRsCA07Lg_JichLACSDMQfERe5sEs-jZZu9q0SeeS3tbGhw5tnTzr5Tv6bvf18ZnUTeh8U_Vd42zYL3Cz8Q71cu-xzlJvrPNrbJsdVq1Jnm5n4ZQcLbAN5ux3jsn89mY2uafTx7uHyfWUas5ERzHXBUgQmuUc8xLrWLvIMslE_Am5BpFrIysQRYUgsETJkRkjEaOoqgwfk4shNzZ6603o1Mr13saTKs1YLstUlBBV6aDS3oXgzUJtfLNGv1UM1B6iGiCqCFH9QFTbaOKDKUSxfTX-L_of1zcEZHgJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516892490</pqid></control><display><type>article</type><title>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</title><source>SpringerLink Journals</source><creator>Rocca, M. C. ; Plastino, A.</creator><creatorcontrib>Rocca, M. C. ; Plastino, A.</creatorcontrib><description>Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.</description><identifier>ISSN: 0103-9733</identifier><identifier>EISSN: 1678-4448</identifier><identifier>DOI: 10.1007/s13538-021-00882-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Field theory ; Particles and Fields ; Physics ; Physics and Astronomy ; Quantum field theory ; Quantum theory</subject><ispartof>Brazilian journal of physics, 2021-06, Vol.51 (3), p.803-812</ispartof><rights>Sociedade Brasileira de Física 2021</rights><rights>Sociedade Brasileira de Física 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a6c70804c163a69ad678755814353a3c046ce8b047ba04a9a83a1ee8aa558bbe3</cites><orcidid>0000-0003-3790-3310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13538-021-00882-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13538-021-00882-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rocca, M. C.</creatorcontrib><creatorcontrib>Plastino, A.</creatorcontrib><title>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</title><title>Brazilian journal of physics</title><addtitle>Braz J Phys</addtitle><description>Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.</description><subject>Field theory</subject><subject>Particles and Fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGsZM4S1TxJ1VCiHbFwpo4Lk2V2sVOhNoV1-B6nASXILFjNdLovTdvPkLOGVwygOIqMJ5xSSFlFEDKlG4PyIjlhaRCCHlIRsCA07Lg_JichLACSDMQfERe5sEs-jZZu9q0SeeS3tbGhw5tnTzr5Tv6bvf18ZnUTeh8U_Vd42zYL3Cz8Q71cu-xzlJvrPNrbJsdVq1Jnm5n4ZQcLbAN5ux3jsn89mY2uafTx7uHyfWUas5ERzHXBUgQmuUc8xLrWLvIMslE_Am5BpFrIysQRYUgsETJkRkjEaOoqgwfk4shNzZ6603o1Mr13saTKs1YLstUlBBV6aDS3oXgzUJtfLNGv1UM1B6iGiCqCFH9QFTbaOKDKUSxfTX-L_of1zcEZHgJ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Rocca, M. C.</creator><creator>Plastino, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3790-3310</orcidid></search><sort><creationdate>20210601</creationdate><title>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</title><author>Rocca, M. C. ; Plastino, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a6c70804c163a69ad678755814353a3c046ce8b047ba04a9a83a1ee8aa558bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Field theory</topic><topic>Particles and Fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocca, M. C.</creatorcontrib><creatorcontrib>Plastino, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocca, M. C.</au><au>Plastino, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</atitle><jtitle>Brazilian journal of physics</jtitle><stitle>Braz J Phys</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>803</spage><epage>812</epage><pages>803-812</pages><issn>0103-9733</issn><eissn>1678-4448</eissn><abstract>Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13538-021-00882-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3790-3310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0103-9733
ispartof Brazilian journal of physics, 2021-06, Vol.51 (3), p.803-812
issn 0103-9733
1678-4448
language eng
recordid cdi_proquest_journals_2516892490
source SpringerLink Journals
subjects Field theory
Particles and Fields
Physics
Physics and Astronomy
Quantum field theory
Quantum theory
title Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Useful%20model%20to%20understand%20Schwartz%E2%80%99%20distributions%E2%80%99%20approach%20to%20non-renormalizable%20QFTs&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Rocca,%20M.%20C.&rft.date=2021-06-01&rft.volume=51&rft.issue=3&rft.spage=803&rft.epage=812&rft.pages=803-812&rft.issn=0103-9733&rft.eissn=1678-4448&rft_id=info:doi/10.1007/s13538-021-00882-y&rft_dat=%3Cproquest_cross%3E2516892490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516892490&rft_id=info:pmid/&rfr_iscdi=true