Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of physics 2021-06, Vol.51 (3), p.803-812 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 |
---|---|
container_issue | 3 |
container_start_page | 803 |
container_title | Brazilian journal of physics |
container_volume | 51 |
creator | Rocca, M. C. Plastino, A. |
description | Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm.
2
115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT. |
doi_str_mv | 10.1007/s13538-021-00882-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516892490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516892490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a6c70804c163a69ad678755814353a3c046ce8b047ba04a9a83a1ee8aa558bbe3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGsZM4S1TxJ1VCiHbFwpo4Lk2V2sVOhNoV1-B6nASXILFjNdLovTdvPkLOGVwygOIqMJ5xSSFlFEDKlG4PyIjlhaRCCHlIRsCA07Lg_JichLACSDMQfERe5sEs-jZZu9q0SeeS3tbGhw5tnTzr5Tv6bvf18ZnUTeh8U_Vd42zYL3Cz8Q71cu-xzlJvrPNrbJsdVq1Jnm5n4ZQcLbAN5ux3jsn89mY2uafTx7uHyfWUas5ERzHXBUgQmuUc8xLrWLvIMslE_Am5BpFrIysQRYUgsETJkRkjEaOoqgwfk4shNzZ6603o1Mr13saTKs1YLstUlBBV6aDS3oXgzUJtfLNGv1UM1B6iGiCqCFH9QFTbaOKDKUSxfTX-L_of1zcEZHgJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516892490</pqid></control><display><type>article</type><title>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</title><source>SpringerLink Journals</source><creator>Rocca, M. C. ; Plastino, A.</creator><creatorcontrib>Rocca, M. C. ; Plastino, A.</creatorcontrib><description>Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm.
2
115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.</description><identifier>ISSN: 0103-9733</identifier><identifier>EISSN: 1678-4448</identifier><identifier>DOI: 10.1007/s13538-021-00882-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Field theory ; Particles and Fields ; Physics ; Physics and Astronomy ; Quantum field theory ; Quantum theory</subject><ispartof>Brazilian journal of physics, 2021-06, Vol.51 (3), p.803-812</ispartof><rights>Sociedade Brasileira de Física 2021</rights><rights>Sociedade Brasileira de Física 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a6c70804c163a69ad678755814353a3c046ce8b047ba04a9a83a1ee8aa558bbe3</cites><orcidid>0000-0003-3790-3310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13538-021-00882-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13538-021-00882-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rocca, M. C.</creatorcontrib><creatorcontrib>Plastino, A.</creatorcontrib><title>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</title><title>Brazilian journal of physics</title><addtitle>Braz J Phys</addtitle><description>Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm.
2
115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.</description><subject>Field theory</subject><subject>Particles and Fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGsZM4S1TxJ1VCiHbFwpo4Lk2V2sVOhNoV1-B6nASXILFjNdLovTdvPkLOGVwygOIqMJ5xSSFlFEDKlG4PyIjlhaRCCHlIRsCA07Lg_JichLACSDMQfERe5sEs-jZZu9q0SeeS3tbGhw5tnTzr5Tv6bvf18ZnUTeh8U_Vd42zYL3Cz8Q71cu-xzlJvrPNrbJsdVq1Jnm5n4ZQcLbAN5ux3jsn89mY2uafTx7uHyfWUas5ERzHXBUgQmuUc8xLrWLvIMslE_Am5BpFrIysQRYUgsETJkRkjEaOoqgwfk4shNzZ6603o1Mr13saTKs1YLstUlBBV6aDS3oXgzUJtfLNGv1UM1B6iGiCqCFH9QFTbaOKDKUSxfTX-L_of1zcEZHgJ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Rocca, M. C.</creator><creator>Plastino, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3790-3310</orcidid></search><sort><creationdate>20210601</creationdate><title>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</title><author>Rocca, M. C. ; Plastino, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a6c70804c163a69ad678755814353a3c046ce8b047ba04a9a83a1ee8aa558bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Field theory</topic><topic>Particles and Fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocca, M. C.</creatorcontrib><creatorcontrib>Plastino, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocca, M. C.</au><au>Plastino, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs</atitle><jtitle>Brazilian journal of physics</jtitle><stitle>Braz J Phys</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>803</spage><epage>812</epage><pages>803-812</pages><issn>0103-9733</issn><eissn>1678-4448</eissn><abstract>Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm.
2
115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13538-021-00882-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3790-3310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0103-9733 |
ispartof | Brazilian journal of physics, 2021-06, Vol.51 (3), p.803-812 |
issn | 0103-9733 1678-4448 |
language | eng |
recordid | cdi_proquest_journals_2516892490 |
source | SpringerLink Journals |
subjects | Field theory Particles and Fields Physics Physics and Astronomy Quantum field theory Quantum theory |
title | Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Useful%20model%20to%20understand%20Schwartz%E2%80%99%20distributions%E2%80%99%20approach%20to%20non-renormalizable%20QFTs&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Rocca,%20M.%20C.&rft.date=2021-06-01&rft.volume=51&rft.issue=3&rft.spage=803&rft.epage=812&rft.pages=803-812&rft.issn=0103-9733&rft.eissn=1678-4448&rft_id=info:doi/10.1007/s13538-021-00882-y&rft_dat=%3Cproquest_cross%3E2516892490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516892490&rft_id=info:pmid/&rfr_iscdi=true |