Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs

Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of physics 2021-06, Vol.51 (3), p.803-812
Hauptverfasser: Rocca, M. C., Plastino, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.
ISSN:0103-9733
1678-4448
DOI:10.1007/s13538-021-00882-y