Applying ubiquitous sensing to estimate perceived exertion based on cardiorespiratory features

Reliable monitoring of one’s response to exercise intensity is imperative to effectively plan and manage training, but not always practical in impact sports settings. This study aimed to evaluate if an inexpensive mobile cardio-respiratory monitoring system can achieve similar performance to a metab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sports engineering 2021-12, Vol.24 (1), Article 9
Hauptverfasser: de Almeida e Bueno, Leonardo, Kwong, Man Ting, Milnthorpe, William R. F., Cheng, Runbei, Bergmann, Jeroen H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliable monitoring of one’s response to exercise intensity is imperative to effectively plan and manage training, but not always practical in impact sports settings. This study aimed to evaluate if an inexpensive mobile cardio-respiratory monitoring system can achieve similar performance to a metabolic cart in estimating rated perceived exertion. Eight adult men volunteered to perform treadmill tests under different conditions. Cardiorespiratory data were collected using a metabolic cart and an instrumented oral-cavity device, as well as their ratings of perceived exertion. Pearson correlation corrected for repeated measurements and stepwise regression analysis were used to observe the relationship between the cardiorespiratory features and the ratings of perceived exertion and determine the proportion of the variance of exertion that could be explained by the measurements. Minute ventilation was found to be the most associated variable to perceived exertion, closely followed by a novel metric called the audio minute volume, which can be collected by the oral-cavity device. A generalised linear model combining minute ventilation, audio minute volume, heart rate and respiration rate accounted for 64% of the variance in perceived exertion, whilst a model with only audio minute volume accounted for 56%. Our study indicates that minute ventilation is key to estimating perceived exertion during indoor running exercises. Audio minute volume was also observed to perform comparably to a lab-based metabolic cart in estimating perceived exertion. This research indicates that mobile techniques offer the potential for real-world data collection of an athlete’s physiological load and estimation of perceived exertion.
ISSN:1369-7072
1460-2687
DOI:10.1007/s12283-021-00346-1