Automatic Double Machine Learning for Continuous Treatment Effects

In this paper, we introduce and prove asymptotic normality for a new nonparametric estimator of continuous treatment effects. Specifically, we estimate the average dose-response function - the expected value of an outcome of interest at a particular level of the treatment level. We utilize tools fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
1. Verfasser: Klosin, Sylvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce and prove asymptotic normality for a new nonparametric estimator of continuous treatment effects. Specifically, we estimate the average dose-response function - the expected value of an outcome of interest at a particular level of the treatment level. We utilize tools from both the double debiased machine learning (DML) and the automatic double machine learning (ADML) literatures to construct our estimator. Our estimator utilizes a novel debiasing method that leads to nice theoretical stability and balancing properties. In simulations our estimator performs well compared to current methods.
ISSN:2331-8422