A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue

The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2020-06, Vol.15 (3)
Hauptverfasser: Chang, Dan, Fan, Rui, Sun, Zitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title International journal of computers, communications & control
container_volume 15
creator Chang, Dan
Fan, Rui
Sun, Zitong
description The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.
doi_str_mv 10.15837/ijccc.2020.3.3836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516422768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516422768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-9ab0b9ae465de70ece0dbc5b7a308866c66d40594f8589ddb51b1d2162a50a773</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGr_gKeA513zneyxrfUDqkLRc8gms2Vru6lJi_Tfu23FucwMPLwvPAjdUlJSabi-b1fe-5IRRkpecsPVBRpQI2hRGSEu_2-urtEo5xXphzNDtBygxRg_AGzxBNYtNPgNdj8xfWHXBTx1GfACXI5d2y3xpH9DD_s2t7HDrzHAGjcx4dkG0hI6f-jh7Pdwg64at84w-ttD9Pk4-5g-F_P3p5fpeF54puWuqFxN6sqBUDKAJuCBhNrLWjtOjFHKKxUEkZVojDRVCLWkNQ2MKuYkcVrzIbo7525T_N5D3tlV3Keur7RMUiUY08r0FDtTPsWcEzR2m9qNSwdLiT3psyd99qjPcnvUx38BLi1iig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516422768</pqid></control><display><type>article</type><title>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Dan ; Fan, Rui ; Sun, Zitong</creator><creatorcontrib>Chang, Dan ; Fan, Rui ; Sun, Zitong</creatorcontrib><description>The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2020.3.3836</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Belief networks ; Decision making ; Earthquakes ; Economic impact ; Emergencies ; Reasoning ; Rescue operations ; Seismic activity</subject><ispartof>International journal of computers, communications &amp; control, 2020-06, Vol.15 (3)</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-9ab0b9ae465de70ece0dbc5b7a308866c66d40594f8589ddb51b1d2162a50a773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Dan</creatorcontrib><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Sun, Zitong</creatorcontrib><title>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</title><title>International journal of computers, communications &amp; control</title><description>The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.</description><subject>Belief networks</subject><subject>Decision making</subject><subject>Earthquakes</subject><subject>Economic impact</subject><subject>Emergencies</subject><subject>Reasoning</subject><subject>Rescue operations</subject><subject>Seismic activity</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1LAzEQhoMoWGr_gKeA513zneyxrfUDqkLRc8gms2Vru6lJi_Tfu23FucwMPLwvPAjdUlJSabi-b1fe-5IRRkpecsPVBRpQI2hRGSEu_2-urtEo5xXphzNDtBygxRg_AGzxBNYtNPgNdj8xfWHXBTx1GfACXI5d2y3xpH9DD_s2t7HDrzHAGjcx4dkG0hI6f-jh7Pdwg64at84w-ttD9Pk4-5g-F_P3p5fpeF54puWuqFxN6sqBUDKAJuCBhNrLWjtOjFHKKxUEkZVojDRVCLWkNQ2MKuYkcVrzIbo7525T_N5D3tlV3Keur7RMUiUY08r0FDtTPsWcEzR2m9qNSwdLiT3psyd99qjPcnvUx38BLi1iig</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Chang, Dan</creator><creator>Fan, Rui</creator><creator>Sun, Zitong</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200601</creationdate><title>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</title><author>Chang, Dan ; Fan, Rui ; Sun, Zitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-9ab0b9ae465de70ece0dbc5b7a308866c66d40594f8589ddb51b1d2162a50a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Belief networks</topic><topic>Decision making</topic><topic>Earthquakes</topic><topic>Economic impact</topic><topic>Emergencies</topic><topic>Reasoning</topic><topic>Rescue operations</topic><topic>Seismic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Dan</creatorcontrib><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Sun, Zitong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications &amp; control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Dan</au><au>Fan, Rui</au><au>Sun, Zitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</atitle><jtitle>International journal of computers, communications &amp; control</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2020.3.3836</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1841-9836
ispartof International journal of computers, communications & control, 2020-06, Vol.15 (3)
issn 1841-9836
1841-9844
language eng
recordid cdi_proquest_journals_2516422768
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Belief networks
Decision making
Earthquakes
Economic impact
Emergencies
Reasoning
Rescue operations
Seismic activity
title A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Belief%20Network%20and%20Case%20Reasoning%20Based%20Decision%20Model%20for%20Emergency%20Rescue&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=Chang,%20Dan&rft.date=2020-06-01&rft.volume=15&rft.issue=3&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2020.3.3836&rft_dat=%3Cproquest_cross%3E2516422768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516422768&rft_id=info:pmid/&rfr_iscdi=true