A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue
The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combin...
Gespeichert in:
Veröffentlicht in: | International journal of computers, communications & control communications & control, 2020-06, Vol.15 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | International journal of computers, communications & control |
container_volume | 15 |
creator | Chang, Dan Fan, Rui Sun, Zitong |
description | The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions. |
doi_str_mv | 10.15837/ijccc.2020.3.3836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516422768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516422768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-9ab0b9ae465de70ece0dbc5b7a308866c66d40594f8589ddb51b1d2162a50a773</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGr_gKeA513zneyxrfUDqkLRc8gms2Vru6lJi_Tfu23FucwMPLwvPAjdUlJSabi-b1fe-5IRRkpecsPVBRpQI2hRGSEu_2-urtEo5xXphzNDtBygxRg_AGzxBNYtNPgNdj8xfWHXBTx1GfACXI5d2y3xpH9DD_s2t7HDrzHAGjcx4dkG0hI6f-jh7Pdwg64at84w-ttD9Pk4-5g-F_P3p5fpeF54puWuqFxN6sqBUDKAJuCBhNrLWjtOjFHKKxUEkZVojDRVCLWkNQ2MKuYkcVrzIbo7525T_N5D3tlV3Keur7RMUiUY08r0FDtTPsWcEzR2m9qNSwdLiT3psyd99qjPcnvUx38BLi1iig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516422768</pqid></control><display><type>article</type><title>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Dan ; Fan, Rui ; Sun, Zitong</creator><creatorcontrib>Chang, Dan ; Fan, Rui ; Sun, Zitong</creatorcontrib><description>The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2020.3.3836</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Belief networks ; Decision making ; Earthquakes ; Economic impact ; Emergencies ; Reasoning ; Rescue operations ; Seismic activity</subject><ispartof>International journal of computers, communications & control, 2020-06, Vol.15 (3)</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-9ab0b9ae465de70ece0dbc5b7a308866c66d40594f8589ddb51b1d2162a50a773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Dan</creatorcontrib><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Sun, Zitong</creatorcontrib><title>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</title><title>International journal of computers, communications & control</title><description>The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.</description><subject>Belief networks</subject><subject>Decision making</subject><subject>Earthquakes</subject><subject>Economic impact</subject><subject>Emergencies</subject><subject>Reasoning</subject><subject>Rescue operations</subject><subject>Seismic activity</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1LAzEQhoMoWGr_gKeA513zneyxrfUDqkLRc8gms2Vru6lJi_Tfu23FucwMPLwvPAjdUlJSabi-b1fe-5IRRkpecsPVBRpQI2hRGSEu_2-urtEo5xXphzNDtBygxRg_AGzxBNYtNPgNdj8xfWHXBTx1GfACXI5d2y3xpH9DD_s2t7HDrzHAGjcx4dkG0hI6f-jh7Pdwg64at84w-ttD9Pk4-5g-F_P3p5fpeF54puWuqFxN6sqBUDKAJuCBhNrLWjtOjFHKKxUEkZVojDRVCLWkNQ2MKuYkcVrzIbo7525T_N5D3tlV3Keur7RMUiUY08r0FDtTPsWcEzR2m9qNSwdLiT3psyd99qjPcnvUx38BLi1iig</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Chang, Dan</creator><creator>Fan, Rui</creator><creator>Sun, Zitong</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200601</creationdate><title>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</title><author>Chang, Dan ; Fan, Rui ; Sun, Zitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-9ab0b9ae465de70ece0dbc5b7a308866c66d40594f8589ddb51b1d2162a50a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Belief networks</topic><topic>Decision making</topic><topic>Earthquakes</topic><topic>Economic impact</topic><topic>Emergencies</topic><topic>Reasoning</topic><topic>Rescue operations</topic><topic>Seismic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Dan</creatorcontrib><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Sun, Zitong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications & control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Dan</au><au>Fan, Rui</au><au>Sun, Zitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue</atitle><jtitle>International journal of computers, communications & control</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2020.3.3836</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1841-9836 |
ispartof | International journal of computers, communications & control, 2020-06, Vol.15 (3) |
issn | 1841-9836 1841-9844 |
language | eng |
recordid | cdi_proquest_journals_2516422768 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Belief networks Decision making Earthquakes Economic impact Emergencies Reasoning Rescue operations Seismic activity |
title | A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Belief%20Network%20and%20Case%20Reasoning%20Based%20Decision%20Model%20for%20Emergency%20Rescue&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=Chang,%20Dan&rft.date=2020-06-01&rft.volume=15&rft.issue=3&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2020.3.3836&rft_dat=%3Cproquest_cross%3E2516422768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516422768&rft_id=info:pmid/&rfr_iscdi=true |