A Deep Belief Network and Case Reasoning Based Decision Model for Emergency Rescue

The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2020-06, Vol.15 (3)
Hauptverfasser: Chang, Dan, Fan, Rui, Sun, Zitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The frequent occurrence of major public emergencies in China has caused significant human and economic losses. To carry out successful rescue operations in such emergencies, decisions need to be made as efficiently as possible. Using earthquakes as an example of a public emergency, this paper combines the Deep Belief Network (DBN) and Case-Based Reasoning (CBR) models to improve the case representation and case retrieval steps in the decision-making process, then designs and constructs a decision-making model. The validity of the model is then verified by an example. The results of this study can be applied to maximize the efficiency of emergency rescue decisions.
ISSN:1841-9836
1841-9844
DOI:10.15837/ijccc.2020.3.3836