Information-Based Node Selection for Joint PCA and Compressive Sensing-Based Data Aggregation
Recently it has been shown that when Principal Component Analysis is applied as a dictionary learning technique to Compressive Sensing-based data aggregation, using a Deterministic Node Selection method for data collection in Wireless Sensor Networks can outperform Random Node Selection ones. In thi...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2021-05, Vol.118 (2), p.1635-1654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently it has been shown that when Principal Component Analysis is applied as a dictionary learning technique to Compressive Sensing-based data aggregation, using a Deterministic Node Selection method for data collection in Wireless Sensor Networks can outperform Random Node Selection ones. In this paper, a new scheduling method for selection of measured nodes in a data collection round, called “Information-Based Deterministic Node Selection”, is proposed. Simulation results for synthetic and real data sets show that the proposed method outperforms a reference DNS method in terms of energy consumption per reconstruction error. Correlation (or covariance) matrix estimation is necessary for DNS strategies which are accomplished by gathering data from all network nodes in a few initial time slots of collection rounds. In this regard, we also propose the use of a particular type of
shrinkage estimator
in preference to the
standard
correlation matrix estimator. With the aid of the new estimator, we can obtain data correlations with the same accuracy of standard estimator while we need less number of observations. Our numerical experiments demonstrate that when the number of measured nodes is less than 50% of the total nodes, using shrinkage estimator causes extra energy savings in sensor nodes. |
---|---|
ISSN: | 0929-6212 1572-834X |
DOI: | 10.1007/s11277-021-08108-9 |