Towards accuracy and scalability: Combining Isogeometric Analysis with deflation to obtain scalable convergence for the Helmholtz equation

Finding fast yet accurate numerical solutions to the Helmholtz equation remains a challenging task. The pollution error (i.e. the discrepancy between the numerical and analytical wave number k) requires the mesh resolution to be kept fine enough to obtain accurate solutions. A recent study showed th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2021-04, Vol.377, p.113694, Article 113694
Hauptverfasser: Dwarka, V., Tielen, R., Möller, M., Vuik, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding fast yet accurate numerical solutions to the Helmholtz equation remains a challenging task. The pollution error (i.e. the discrepancy between the numerical and analytical wave number k) requires the mesh resolution to be kept fine enough to obtain accurate solutions. A recent study showed that the use of Isogeometric Analysis (IgA) for the spatial discretization significantly reduces the pollution error. However, solving the resulting linear systems by means of a direct solver remains computationally expensive when large wave numbers or multiple dimensions are considered. An alternative lies in the use of (preconditioned) Krylov subspace methods. Recently, the use of the exact Complex Shifted Laplacian Preconditioner (CSLP) with a small complex shift has shown to lead to wave number independent convergence while obtaining more accurate numerical solutions using IgA. In this paper, we propose the use of deflation techniques combined with an approximated inverse of the CSLP using a geometric multigrid method. Numerical results obtained for one- and two-dimensional model problems, including constant and non-constant wave numbers, show scalable convergence with respect to the wave number and approximation order p of the spatial discretization. Furthermore, when kh is kept constant, the proposed approach leads to a significant reduction of the computational time compared to the use of the multigrid-approximated or exact inverse of the CSLP with a small shift, in particular for three-dimensional model problems.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2021.113694