Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control
This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2021-05, Vol.12 (3), p.2389-2401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2401 |
---|---|
container_issue | 3 |
container_start_page | 2389 |
container_title | IEEE transactions on smart grid |
container_volume | 12 |
creator | Mukherjee, Sayak Chakrabortty, Aranya Bai, He Darvishi, Atena Fardanesh, Bruce |
description | This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any practical grid would require an unacceptably long learning time and result in a dense communication architecture. Our designs avoid the curse of dimensionality by employing ideas from model reduction. The first design exploits time-scale separation in the generator electro-mechanical dynamics arising from coherent clustering, and learns a controller using both electro-mechanical and non-electro-mechanical states while compensating for the error in incorporating the latter through the RL loop. The second design presents an output-feedback approach enabled by a neuro-adaptive observer using measurements of only the generator frequencies. The controller exhibits an adaptive behavior that updates the control gains whenever there is a notable change in the loads. Theoretical guarantees for closed-loop stability and performance are provided for both designs. Numerical simulations are shown for the IEEE 68-bus power system model. |
doi_str_mv | 10.1109/TSG.2021.3050419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2515857017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9317755</ieee_id><sourcerecordid>2515857017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b8f4965bdbbaa0e8e239a89e1b3c9b7cf4b1dc2cdc7fa3283c3ca006a1d8960e3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8LnhP3I5tkj7XVKhYEW_G4zG4mJSVN6m568L93S0vn8obhvXnwI-Ses5Rzpp_Wq0UqmOCpZIplXF-REdeZTiTL-fVlV_KWTELYsjhSylzoEflYOWjBtkjnGJpNF2jde_qFTRfV4Q67gS4RfNd0m-QZAlb0p6kwmXoEOofdPt7prO8G37d35KaGNuDkrGPy_fqynr0ly8_F-2y6TFxsHRJb1pnOla2sBWBYopAaSo3cSqdt4erM8soJV7miBilK6aQDxnLgValzhnJMHk9_977_PWAYzLY_-C5WGqG4KlXBeBFd7ORyvg_BY232vtmB_zOcmSM1E6mZIzVzphYjD6dIg4gXu5a8KJSS_-WjaDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515857017</pqid></control><display><type>article</type><title>Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control</title><source>IEEE Electronic Library (IEL)</source><creator>Mukherjee, Sayak ; Chakrabortty, Aranya ; Bai, He ; Darvishi, Atena ; Fardanesh, Bruce</creator><creatorcontrib>Mukherjee, Sayak ; Chakrabortty, Aranya ; Bai, He ; Darvishi, Atena ; Fardanesh, Bruce</creatorcontrib><description>This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any practical grid would require an unacceptably long learning time and result in a dense communication architecture. Our designs avoid the curse of dimensionality by employing ideas from model reduction. The first design exploits time-scale separation in the generator electro-mechanical dynamics arising from coherent clustering, and learns a controller using both electro-mechanical and non-electro-mechanical states while compensating for the error in incorporating the latter through the RL loop. The second design presents an output-feedback approach enabled by a neuro-adaptive observer using measurements of only the generator frequencies. The controller exhibits an adaptive behavior that updates the control gains whenever there is a notable change in the loads. Theoretical guarantees for closed-loop stability and performance are provided for both designs. Numerical simulations are shown for the IEEE 68-bus power system model.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2021.3050419</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Clustering ; Controllers ; Damping ; Error compensation ; Generators ; Learning ; Load modeling ; Mathematical models ; Model reduction ; model-free control ; neural observer ; oscillation damping ; Oscillators ; Output feedback ; Phasor measurement units ; Power system dynamics ; Power system stability ; Reinforcement learning ; singular perturbation</subject><ispartof>IEEE transactions on smart grid, 2021-05, Vol.12 (3), p.2389-2401</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b8f4965bdbbaa0e8e239a89e1b3c9b7cf4b1dc2cdc7fa3283c3ca006a1d8960e3</citedby><cites>FETCH-LOGICAL-c333t-b8f4965bdbbaa0e8e239a89e1b3c9b7cf4b1dc2cdc7fa3283c3ca006a1d8960e3</cites><orcidid>0000-0002-3474-8215 ; 0000-0001-8184-4755 ; 0000-0002-4247-0698 ; 0000-0002-6644-3408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9317755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9317755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mukherjee, Sayak</creatorcontrib><creatorcontrib>Chakrabortty, Aranya</creatorcontrib><creatorcontrib>Bai, He</creatorcontrib><creatorcontrib>Darvishi, Atena</creatorcontrib><creatorcontrib>Fardanesh, Bruce</creatorcontrib><title>Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any practical grid would require an unacceptably long learning time and result in a dense communication architecture. Our designs avoid the curse of dimensionality by employing ideas from model reduction. The first design exploits time-scale separation in the generator electro-mechanical dynamics arising from coherent clustering, and learns a controller using both electro-mechanical and non-electro-mechanical states while compensating for the error in incorporating the latter through the RL loop. The second design presents an output-feedback approach enabled by a neuro-adaptive observer using measurements of only the generator frequencies. The controller exhibits an adaptive behavior that updates the control gains whenever there is a notable change in the loads. Theoretical guarantees for closed-loop stability and performance are provided for both designs. Numerical simulations are shown for the IEEE 68-bus power system model.</description><subject>Adaptive control</subject><subject>Clustering</subject><subject>Controllers</subject><subject>Damping</subject><subject>Error compensation</subject><subject>Generators</subject><subject>Learning</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Model reduction</subject><subject>model-free control</subject><subject>neural observer</subject><subject>oscillation damping</subject><subject>Oscillators</subject><subject>Output feedback</subject><subject>Phasor measurement units</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Reinforcement learning</subject><subject>singular perturbation</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsNTeBS8LnhP3I5tkj7XVKhYEW_G4zG4mJSVN6m568L93S0vn8obhvXnwI-Ses5Rzpp_Wq0UqmOCpZIplXF-REdeZTiTL-fVlV_KWTELYsjhSylzoEflYOWjBtkjnGJpNF2jde_qFTRfV4Q67gS4RfNd0m-QZAlb0p6kwmXoEOofdPt7prO8G37d35KaGNuDkrGPy_fqynr0ly8_F-2y6TFxsHRJb1pnOla2sBWBYopAaSo3cSqdt4erM8soJV7miBilK6aQDxnLgValzhnJMHk9_977_PWAYzLY_-C5WGqG4KlXBeBFd7ORyvg_BY232vtmB_zOcmSM1E6mZIzVzphYjD6dIg4gXu5a8KJSS_-WjaDY</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mukherjee, Sayak</creator><creator>Chakrabortty, Aranya</creator><creator>Bai, He</creator><creator>Darvishi, Atena</creator><creator>Fardanesh, Bruce</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3474-8215</orcidid><orcidid>https://orcid.org/0000-0001-8184-4755</orcidid><orcidid>https://orcid.org/0000-0002-4247-0698</orcidid><orcidid>https://orcid.org/0000-0002-6644-3408</orcidid></search><sort><creationdate>20210501</creationdate><title>Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control</title><author>Mukherjee, Sayak ; Chakrabortty, Aranya ; Bai, He ; Darvishi, Atena ; Fardanesh, Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b8f4965bdbbaa0e8e239a89e1b3c9b7cf4b1dc2cdc7fa3283c3ca006a1d8960e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Clustering</topic><topic>Controllers</topic><topic>Damping</topic><topic>Error compensation</topic><topic>Generators</topic><topic>Learning</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Model reduction</topic><topic>model-free control</topic><topic>neural observer</topic><topic>oscillation damping</topic><topic>Oscillators</topic><topic>Output feedback</topic><topic>Phasor measurement units</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Reinforcement learning</topic><topic>singular perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sayak</creatorcontrib><creatorcontrib>Chakrabortty, Aranya</creatorcontrib><creatorcontrib>Bai, He</creatorcontrib><creatorcontrib>Darvishi, Atena</creatorcontrib><creatorcontrib>Fardanesh, Bruce</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mukherjee, Sayak</au><au>Chakrabortty, Aranya</au><au>Bai, He</au><au>Darvishi, Atena</au><au>Fardanesh, Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>2389</spage><epage>2401</epage><pages>2389-2401</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any practical grid would require an unacceptably long learning time and result in a dense communication architecture. Our designs avoid the curse of dimensionality by employing ideas from model reduction. The first design exploits time-scale separation in the generator electro-mechanical dynamics arising from coherent clustering, and learns a controller using both electro-mechanical and non-electro-mechanical states while compensating for the error in incorporating the latter through the RL loop. The second design presents an output-feedback approach enabled by a neuro-adaptive observer using measurements of only the generator frequencies. The controller exhibits an adaptive behavior that updates the control gains whenever there is a notable change in the loads. Theoretical guarantees for closed-loop stability and performance are provided for both designs. Numerical simulations are shown for the IEEE 68-bus power system model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2021.3050419</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3474-8215</orcidid><orcidid>https://orcid.org/0000-0001-8184-4755</orcidid><orcidid>https://orcid.org/0000-0002-4247-0698</orcidid><orcidid>https://orcid.org/0000-0002-6644-3408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2021-05, Vol.12 (3), p.2389-2401 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2515857017 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Clustering Controllers Damping Error compensation Generators Learning Load modeling Mathematical models Model reduction model-free control neural observer oscillation damping Oscillators Output feedback Phasor measurement units Power system dynamics Power system stability Reinforcement learning singular perturbation |
title | Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Designs%20for%20Reinforcement%20Learning-Based%20Wide-Area%20Damping%20Control&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Mukherjee,%20Sayak&rft.date=2021-05-01&rft.volume=12&rft.issue=3&rft.spage=2389&rft.epage=2401&rft.pages=2389-2401&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2021.3050419&rft_dat=%3Cproquest_RIE%3E2515857017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515857017&rft_id=info:pmid/&rft_ieee_id=9317755&rfr_iscdi=true |