Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control
This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2021-05, Vol.12 (3), p.2389-2401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any practical grid would require an unacceptably long learning time and result in a dense communication architecture. Our designs avoid the curse of dimensionality by employing ideas from model reduction. The first design exploits time-scale separation in the generator electro-mechanical dynamics arising from coherent clustering, and learns a controller using both electro-mechanical and non-electro-mechanical states while compensating for the error in incorporating the latter through the RL loop. The second design presents an output-feedback approach enabled by a neuro-adaptive observer using measurements of only the generator frequencies. The controller exhibits an adaptive behavior that updates the control gains whenever there is a notable change in the loads. Theoretical guarantees for closed-loop stability and performance are provided for both designs. Numerical simulations are shown for the IEEE 68-bus power system model. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2021.3050419 |