Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs

We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2021-05, Vol.187 (1-2), p.253-285
Hauptverfasser: Ryan, Christopher Thomas, Smith, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 1-2
container_start_page 253
container_title Mathematical programming
container_volume 187
creator Ryan, Christopher Thomas
Smith, Robert L.
description We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise converge to an optimal dual solution, while the primal-dual algorithm provides a sequence of primal basic feasible solutions with value error bounds from optimality that converge to zero. Our dual-based methods work on a more general class of infinite network flow problems that include the shortest-path formulation of dynamic programs as a special case. To our knowledge, these are the first dual-based methods proposed in the literature to solve infinite-horizon nonstationary deterministic dynamic programs.
doi_str_mv 10.1007/s10107-020-01478-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515769372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515769372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5aabfef05305179b75f6ecd68aee2cf708f69381c4681a4064a164513372716b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-i9k9d0KfUJghvdCSEzk7RTOklNUqH-eqMV3Lm6m-87h3sIOUe4RAB1lRAQFIUaKCBXDcUDMkHOJOWSy0MyAagFFRLhmJyktAIAZE0zIW83W7OmrUm2r0abl6FPlQuxSmH9MfhFNXg3-CFbugxx-Ay-8sGnbPIQvIm7qrfZxrEQKQ9d1e-8GcvdxLCIZkyn5MiZdbJnv3dKXu9uX-YP9On5_nF-_UQ7hrNMhTGtsw4EA4Fq1irhpO162Rhr684paJycsQY7Lhs0HCQ3KLlAxlStULZsSi72uaX4fWtT1quwjb5U6lqgUMVWdaHqPdXFkFK0Tm_iMJYvNIL-XlHvV9RlRf2zosYisb2UCuwXNv5F_2N9AauUdhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515769372</pqid></control><display><type>article</type><title>Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ryan, Christopher Thomas ; Smith, Robert L.</creator><creatorcontrib>Ryan, Christopher Thomas ; Smith, Robert L.</creatorcontrib><description>We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise converge to an optimal dual solution, while the primal-dual algorithm provides a sequence of primal basic feasible solutions with value error bounds from optimality that converge to zero. Our dual-based methods work on a more general class of infinite network flow problems that include the shortest-path formulation of dynamic programs as a special case. To our knowledge, these are the first dual-based methods proposed in the literature to solve infinite-horizon nonstationary deterministic dynamic programs.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-020-01478-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Ascent ; Basic converters ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Convergence ; Full Length Paper ; Horizon ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Shortest-path problems ; Theoretical</subject><ispartof>Mathematical programming, 2021-05, Vol.187 (1-2), p.253-285</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5aabfef05305179b75f6ecd68aee2cf708f69381c4681a4064a164513372716b3</citedby><cites>FETCH-LOGICAL-c319t-5aabfef05305179b75f6ecd68aee2cf708f69381c4681a4064a164513372716b3</cites><orcidid>0000-0002-1957-2303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-020-01478-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-020-01478-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ryan, Christopher Thomas</creatorcontrib><creatorcontrib>Smith, Robert L.</creatorcontrib><title>Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise converge to an optimal dual solution, while the primal-dual algorithm provides a sequence of primal basic feasible solutions with value error bounds from optimality that converge to zero. Our dual-based methods work on a more general class of infinite network flow problems that include the shortest-path formulation of dynamic programs as a special case. To our knowledge, these are the first dual-based methods proposed in the literature to solve infinite-horizon nonstationary deterministic dynamic programs.</description><subject>Algorithms</subject><subject>Ascent</subject><subject>Basic converters</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Convergence</subject><subject>Full Length Paper</subject><subject>Horizon</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Shortest-path problems</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-i9k9d0KfUJghvdCSEzk7RTOklNUqH-eqMV3Lm6m-87h3sIOUe4RAB1lRAQFIUaKCBXDcUDMkHOJOWSy0MyAagFFRLhmJyktAIAZE0zIW83W7OmrUm2r0abl6FPlQuxSmH9MfhFNXg3-CFbugxx-Ay-8sGnbPIQvIm7qrfZxrEQKQ9d1e-8GcvdxLCIZkyn5MiZdbJnv3dKXu9uX-YP9On5_nF-_UQ7hrNMhTGtsw4EA4Fq1irhpO162Rhr684paJycsQY7Lhs0HCQ3KLlAxlStULZsSi72uaX4fWtT1quwjb5U6lqgUMVWdaHqPdXFkFK0Tm_iMJYvNIL-XlHvV9RlRf2zosYisb2UCuwXNv5F_2N9AauUdhs</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ryan, Christopher Thomas</creator><creator>Smith, Robert L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1957-2303</orcidid></search><sort><creationdate>20210501</creationdate><title>Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs</title><author>Ryan, Christopher Thomas ; Smith, Robert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5aabfef05305179b75f6ecd68aee2cf708f69381c4681a4064a164513372716b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ascent</topic><topic>Basic converters</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Convergence</topic><topic>Full Length Paper</topic><topic>Horizon</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Shortest-path problems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Christopher Thomas</creatorcontrib><creatorcontrib>Smith, Robert L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Christopher Thomas</au><au>Smith, Robert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>187</volume><issue>1-2</issue><spage>253</spage><epage>285</epage><pages>253-285</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise converge to an optimal dual solution, while the primal-dual algorithm provides a sequence of primal basic feasible solutions with value error bounds from optimality that converge to zero. Our dual-based methods work on a more general class of infinite network flow problems that include the shortest-path formulation of dynamic programs as a special case. To our knowledge, these are the first dual-based methods proposed in the literature to solve infinite-horizon nonstationary deterministic dynamic programs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-020-01478-1</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-1957-2303</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2021-05, Vol.187 (1-2), p.253-285
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2515769372
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Ascent
Basic converters
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Convergence
Full Length Paper
Horizon
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Shortest-path problems
Theoretical
title Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-based%20methods%20for%20solving%20infinite-horizon%20nonstationary%20deterministic%20dynamic%20programs&rft.jtitle=Mathematical%20programming&rft.au=Ryan,%20Christopher%20Thomas&rft.date=2021-05-01&rft.volume=187&rft.issue=1-2&rft.spage=253&rft.epage=285&rft.pages=253-285&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-020-01478-1&rft_dat=%3Cproquest_cross%3E2515769372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515769372&rft_id=info:pmid/&rfr_iscdi=true