Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs

We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2021-05, Vol.187 (1-2), p.253-285
Hauptverfasser: Ryan, Christopher Thomas, Smith, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstationary deterministic dynamic programs. These methods are finitely implementable and converge in value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual solutions that pointwise converge to an optimal dual solution, while the primal-dual algorithm provides a sequence of primal basic feasible solutions with value error bounds from optimality that converge to zero. Our dual-based methods work on a more general class of infinite network flow problems that include the shortest-path formulation of dynamic programs as a special case. To our knowledge, these are the first dual-based methods proposed in the literature to solve infinite-horizon nonstationary deterministic dynamic programs.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-020-01478-1