The novel circular RNA circ-PGAP3 retards cervical cancer growth by regulating the miR-769-5p/p53 axis

Cervical cancer (CC) is still an intractable disease that seriously affects women's health. Elucidating its pathogenesis will bring new targets for clinical treatment. Circular RNA (circRNA) is an endogenous RNA that has recently been reported to be closely related to cancer progression and dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human cell : official journal of Human Cell Research Society 2021-05, Vol.34 (3), p.878-888
Hauptverfasser: Jun, Tian, Chen, Wang, Hailing, Cheng, Ning, Wang, Qinxue, Cao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cervical cancer (CC) is still an intractable disease that seriously affects women's health. Elucidating its pathogenesis will bring new targets for clinical treatment. Circular RNA (circRNA) is an endogenous RNA that has recently been reported to be closely related to cancer progression and development. In the current study, by performing in silico analysis and qRT-PCR assay, we found a circRNA derived from PGAP3, referred as circ-PGAP3 (hsa_circ_0106800, chr17:37843549–37844086), which was significantly downregulated in CC tissues. Low circ-PGAP3 was closely linked to poor prognosis. And overexpression of circ-PGAP3 significantly reduced CC cell proliferation in vitro and tumor growth in vivo. In terms of mechanism, circ-PGAP3 was transcriptionally elevated by p53, a well-recognized tumor suppressor, and circ-PGAP3 was located in the cytoplasm where sponged miR-769-5p to increase the levels of p53 and its downstream targets. Importantly, the regulatory feedback loop of circ-PGAP3/p53 was also confirmed in vivo. Overall, our data clearly expounded the tumor-inhibiting role of circ-PGAP3 in CC, circ-PGAP3 repressed CC tumorigenesis via regulating the miR-769-5p/p53 axis. Therefore, restoration of circ-PGAP3 may be a promising therapeutic target for this thorny disease.
ISSN:0914-7470
1749-0774
1749-0774
DOI:10.1007/s13577-021-00493-4