Elution behavior of a 3D-printed, milled and conventional resin-based occlusal splint material
•Biocompatibility of 3 D printed splints versus milled and hand-made.•Elution of monomers from a 3 D printed splint polymer in water and methanol.•Residual monomers in 3 D printed splint. The elution of unpolymerized (co-)monomers and additives from methacrylic resin-based materials like polymethyl...
Gespeichert in:
Veröffentlicht in: | Dental materials 2021-04, Vol.37 (4), p.701-710 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Biocompatibility of 3 D printed splints versus milled and hand-made.•Elution of monomers from a 3 D printed splint polymer in water and methanol.•Residual monomers in 3 D printed splint.
The elution of unpolymerized (co-)monomers and additives from methacrylic resin-based materials like polymethyl methacrylate (PMMA) can cause adverse side effects, such as mutagenicity, teratogenicity, genotoxicity, cytotoxicity and estrogenic activity.
The aim of this study was to quantify the release and the cytotoxicity of residual (co-)monomers and additives from PMMA-based splint materials under consideration of real splint sizes. Three different materials used for additive (3D printing), subtractive (milling) and conventional (powder and liquid) manufacturing were examined.
The splint materials SHERAprint-ortho plus (additive), SHERAeco-disc PM20 (subtractive) and SHERAORTHOMER (conventional) were analysed. 16 (n = 4) sample discs of each material (6 mm diameter and 2 mm height) were polished on the circular and one cross-section area and then eluted in both distilled water and methanol. The discs were incubated at 37 °C for 24 h or 72 h and subsequently analysed by gas chromatography/mass spectrometry (GC/MS) for specifying and quantifying released compounds. XTT-based cell viability assays with human gingival fibroblasts (HGFs) were performed for Tetrahydrofurfuryl methacrylate (THFMA), 1,4-Butylene glycol dimethacrylate (BDDMA) and Tripropylenglycol diacrylate (TPGDA). In order to project the disc size to actual splint sizes in a worst-case scenario, lower and upper jaw occlusal splints were designed and volumes and surfaces were measured.
For SHERAeco-disc PM20 and for SHERAORTHOMER no elution was determined in water. SHERAprint-ortho plus eluted the highest THFMA concentration of 7.47 μmol/l ±2,77 μmol/l after 72 h in water. Six (co-)monomers and five additives were detected in the methanol eluates of all three materials tested. The XTT-based cell viability assays resulted in a EC50 of 3006 ± 408 μmol/l for THFMA, 2569.5 ± 308 μmol/l for BDDMA and 596.7 ± 88 μmol/l for TPGDA.
With the solvent methanol, released components from the investigated splint materials exceeded cytotoxic concentrations in HGFs calculated for a worst-case scenario in splint size. In the water eluates only the methacrylate THFMA could be determined from SHERAprint-ortho plus in concentrations below cytotoxic levels in HGFs. |
---|---|
ISSN: | 0109-5641 1879-0097 |
DOI: | 10.1016/j.dental.2021.01.024 |