Unsupervised Hyperspectral Stimulated Raman Microscopy Image Enhancement: Denoising and Segmentation via One-Shot Deep Learning

Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal to noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Abdolghader, Pedram, Ridsdale, Andrew, Grammatikopoulos, Tassos, Resch, Gavin, Legare, Francois, Stolow, Albert, Pegoraro, Adrian F, Tamblyn, Isaac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal to noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images: UHRED (Unsupervised Hyperspectral Resolution Enhancement and Denoising). UHRED is capable of one-shot learning; only one hyperspectral image is needed, with no requirements for training on previously labelled datasets or images. Furthermore, by applying a k-means clustering algorithm to the processed data, we demonstrate automatic, unsupervised image segmentation, yielding, without prior knowledge of the sample, intuitive chemical species maps, as shown here for a lithium ore sample.
ISSN:2331-8422