Surfactant induced sonic fission: an effective strategy for biohydrogen recovery from sea grass Syringodiumisoetifolium

Summary Sea grass (Syringodiumisoetifolium) is a promising source of bioenergy such as hydrogen. Due to the complex cell structure, it requires a pretreatment process prior to fermentation. This study aims to increase the biohydrogen production from sea grass by enhancing the solubilization via surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2021-05, Vol.45 (6), p.8296-8306
Hauptverfasser: Rajesh Banu, J., Dinesh Kumar, M., Kavitha, S., Yoon, Jeong‐Jun, Kumar, Gopalakrishnan, Park, Jeong‐Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Sea grass (Syringodiumisoetifolium) is a promising source of bioenergy such as hydrogen. Due to the complex cell structure, it requires a pretreatment process prior to fermentation. This study aims to increase the biohydrogen production from sea grass by enhancing the solubilization via surfactant induced sonic fission (SSF). Initially, sonic fission (SF) pretreatment alone was carried out intherange of power from 0.02 kW to 0.18 kW for 0 minutes to 60 minutes. At the optimum condition of SF (0.14 kW, 30 minutes), ammonium dodecyl sulfate, a surfactant was added to improve the pretreatment by reducing its disintegration time period. The condition of SSF 0.14 kW (sonic power), 0.0025 g/g TS (surfactant dosage) and 11 minutes (time) was considered as optimum for effective solubilization of sea grass. The study results illustrated that highersolubilizationof 20.7% was attained through SSF when compared with SF (13.5%). Higher biohydrogen (H2) production of 114(mL H2/g COD) was obtained in SSF when compared to SF.
ISSN:0363-907X
1099-114X
DOI:10.1002/er.5731