Constant Angle Surfaces in the Lorentzian Warped Product Manifold -I×fE2
In this work, we study constant angle space-like and time-like surfaces in the 3-dimensional Lorentzian warped product manifold - I × f E 2 with the metric g ~ = - d t 2 + f 2 ( t ) ( d x 2 + d y 2 ) , where I is an open interval, f is a strictly positive function on I , and E 2 is the Euclidean pla...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2021, Vol.18 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study constant angle space-like and time-like surfaces in the 3-dimensional Lorentzian warped product manifold
-
I
×
f
E
2
with the metric
g
~
=
-
d
t
2
+
f
2
(
t
)
(
d
x
2
+
d
y
2
)
, where
I
is an open interval,
f
is a strictly positive function on
I
, and
E
2
is the Euclidean plane. We obtain a classification of all constant angle space-like and time-like surfaces in
-
I
×
f
E
2
. In this classification, we determine space-like and time-like surfaces with zero mean curvature, rotational surfaces, and surfaces with constant Gaussian curvature. Also, we obtain some results on constant angle space-like and time-like surfaces of the de Sitter space
S
1
3
(
1
)
. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-021-01763-z |