Investigation of the elastic properties of poly (methyl methacrylate) reinforced with graphene nanoplatelets

The technique for synthesis of poly (methyl methacrylate) (PMMA) by atom transfer radical polymerization has been strengthened by using graphene nanoplatelets (GNPs) to enhance the elastic properties of the polymer. In order to improve practical, economical and mechanical performance, the requiremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-08, Vol.138 (29), p.n/a
Hauptverfasser: Muhammettursun, Mahmut, Bel, Tayfun, Kocacinar, Elif, Erman, Ecem, Gul, Fuat Berke, Augousti, Andy, Baydogan, Nilgun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The technique for synthesis of poly (methyl methacrylate) (PMMA) by atom transfer radical polymerization has been strengthened by using graphene nanoplatelets (GNPs) to enhance the elastic properties of the polymer. In order to improve practical, economical and mechanical performance, the requirements for effective implementation of production control as a smart bulk polymer nanocomposite were determined for cost‐effective bulk production. Three‐dimensional inspection (using an ultrasound interrogation method for the whole volume under test) confirmed the synthesis of the nanocomposite to be free of agglomeration and bubbles. As a result of this elimination of defects, an enhancement in compressive strength of 42.7% was achieved and the Rockwell hardness was increased by 19.9% through the addition of GNPs at 2 wt% by mass. The deformation and mechanical failure properties have been characterized in the mechanical enhancement of the polymer nanocomposite. Elastic parameters determined using ultrasound testing identified that changes in the structural features following the addition of these GNPs were uniquely connected to the enhancements in these elastic parameters (such as Young's modulus, Poisson's ratio, shear modulus, and microhardness) of the PMMA/GNPs nanocomposite.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.50689