Development of a Fish-Like Robot with a Continuous and High Frequency Snap-Through Buckling Mechanism Using a Triangular Cam
This study focuses on the high maneuverability of fish in water to design a fish-like robot via snap-through buckling. The aim of this study is to improve swimming speed by increasing the frequency at which snap-through buckling occurs. Here, we propose a novel drive mechanism using a triangular cam...
Gespeichert in:
Veröffentlicht in: | Journal of robotics and mechatronics 2021-04, Vol.33 (2), p.400-409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focuses on the high maneuverability of fish in water to design a fish-like robot via snap-through buckling. The aim of this study is to improve swimming speed by increasing the frequency at which snap-through buckling occurs. Here, we propose a novel drive mechanism using a triangular cam that can continuously generate snap-through buckling at a high frequency. In addition, we developed a fish-like robot via the proposed mechanism and analyzed the influence of the frequency of snap-through buckling on swimming speed. The results obtained indicate that swimming speed is improved and that the relationship between frequency and swimming speed exhibits a single peak. In other words, the swimming speed is reduced when the frequency is significantly increased. We also determined that swimming speed was improved using a wide elastic thin plate as the driving mechanism. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2021.p0400 |