Risk Assessment of Hydrocarbons’ Storing in Different Textured Soils in Small-Scale lysimeters

The objectives of this study are to test the penetration depth and determine the soil content in hydrocarbons’ components BTEX, PAHs, and TPH, after vertical movement of crude oil through undisturbed soils of different textures, and to assess their risk. The experiment simulates the fate of oil spil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2021-05, Vol.232 (5), Article 169
Hauptverfasser: Lăcătușu, Anca-Rovena, Paltineanu, Cristian, Domnariu, Horia, Vrinceanu, Andrei, Marica, Dora, Cristea, Ionut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objectives of this study are to test the penetration depth and determine the soil content in hydrocarbons’ components BTEX, PAHs, and TPH, after vertical movement of crude oil through undisturbed soils of different textures, and to assess their risk. The experiment simulates the fate of oil spills in the cold season. Three soil types were investigated: a sandy-textured eutric Arenosol, AR-eu; a loamy-textured haplic chernozem, CH-ha; and a clayey-textured, swell-shrink, Luvic Chernic Phaeozem, PH-ch-lv. Undisturbed small-scale lysimeters, 0.3 m in diameter and 1 m in length, were used. Crude oil was first applied and then water. TPH, BTEX, and PAH retention in the soils depends on soil texture. PH-ch-lv soil stored most of them in the upper horizons. TPH, BTEX, and PAH were found in different amounts as percentage from the applied ones, TPH as 48% (PH-ch-lv), and > 76% in the other two soils. BTEX was stored as 1.6% from the applied in PH-ch-lv, 5.1–5.1% in CH-ha and AR-eu soils, while PAH ranged from 15.1% in AR-eu soil to 24.8% in PH-ch-lv and 31% in CH-ha. Though subject to volatilization, chemical transformation, and bioremediation, TPH, BTEX, and PAH stored in soils present a health risk if they reach the groundwater. PH-ch-lv appears to be the most resilient soil to oil pollution. The results concern different soil textures and might be used in various countries. Future experimentation should focus on soil behavior in relation to crops, water, and certain crude oil types.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-021-05126-y