An effective Kriging-based approximation for structural reliability analysis with random and interval variables

Aleatory and epistemic uncertainties usually coexist within a mechanistic model, which motivates the hybrid structural reliability analysis considering random and interval variables in this paper. An introduction of the interval variable requires one to recursively evaluate embedded optimizations fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2021-05, Vol.63 (5), p.2473-2491
Hauptverfasser: Zhang, Xufang, Wu, Zhenguang, Ma, Hui, Pandey, Mahesh D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aleatory and epistemic uncertainties usually coexist within a mechanistic model, which motivates the hybrid structural reliability analysis considering random and interval variables in this paper. An introduction of the interval variable requires one to recursively evaluate embedded optimizations for the extremum of a performance function. The corresponding structural reliability analysis, hence, becomes a rather computationally intensive task. In this paper, physical characteristics for potential optima of the interval variable are first derived based on the Karush-Kuhn-Tucker condition, which is further programmed as a simulation procedure to pair qualified candidate samples. Then, an outer truncation boundary provided by the first-order reliability method is used to link the size of a truncation domain with the targeted failure probability, whereas the U function is acted as a refinement criterion to remove inner samples for an increased learning efficiency. Given new samples detected by the revised reliability-based expected improvement function, an adaptive Kriging surrogate model is determined to tackle the hybrid structural reliability analysis. Several numerical examples in the literature are presented to demonstrate applications of this proposed algorithm. Compared to benchmark results provided by the brute-force Monte Carlo simulation, the high accuracy and efficiency of this proposed approach have justified its potentials for the hybrid structural reliability analysis.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-020-02825-8