A PA/O-NGO/PPS sandwich composite membrane prepared via multi-step interfacial polymerization for desalination

In view of the disadvantages of concentration polarization and trade-off effects in the application of membrane in desalination field, oxide-nano graphene oxide/polyamide (O-NGO/PA) loose intermediate layer and PA ultra-thin dense layer were introduced to fabricate PA/O-NGO/polyphenylene sulfide com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-07, Vol.56 (20), p.11736-11748
Hauptverfasser: Gao, Yuan, Zhou, Xinghai, Zhang, Maliang, Li, Zhenhuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In view of the disadvantages of concentration polarization and trade-off effects in the application of membrane in desalination field, oxide-nano graphene oxide/polyamide (O-NGO/PA) loose intermediate layer and PA ultra-thin dense layer were introduced to fabricate PA/O-NGO/polyphenylene sulfide composite membrane with sandwich structure via multi-step interfacial polymerization (MS-IP) method. The selective permeation mechanism of ultrathin layer produced by different aqueous monomers (PIP and MPD) was studied, the effect of its physicochemical structure on the relief of concentration polarization phenomenon and the breakthrough of trade-off effect was analyzed. The ultra-thin and dense PA layer mainly played the role of interception and shortened the water molecular penetration path. In the retention test of metal salt solution, compared with the rough surface, it was found that the smooth surface was more conducive to the diffusion of intercepted metal ions into the feed solution, thus alleviating the concentration polarization phenomenon. Graphical abstract
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-021-06062-2