Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic
The urgent requirement of environment-friendly materials with excellent energy storage performance for pulse power systems has sparked considerable research on lead-free ceramics. In this work, a new lead-free 0.90(0.80NaNbO 3 –0.20Sr 0.7 Bi 0.2 TiO 3 )–0.10BaSnO 3 ceramic with high recoverable ener...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-07, Vol.56 (20), p.11922-11931 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11931 |
---|---|
container_issue | 20 |
container_start_page | 11922 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Li, Siyi Shi, Peng Zhu, Xiaopei Yang, Bian Zhang, Xiaoxiao Kang, Ruirui Liu, Qida Gao, Yangfei Sun, Haonan Lou, Xiaojie |
description | The urgent requirement of environment-friendly materials with excellent energy storage performance for pulse power systems has sparked considerable research on lead-free ceramics. In this work, a new lead-free 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramic with high recoverable energy storage density (
W
r
= 3.51 J/cm
3
) and decent energy storage efficiency (
η
= 70.85%) has been obtained. In particular, these ceramics exhibit an ultrahigh breakdown strength of 402 kV/cm due to the dense microstructure and small grain size. The impedance analysis also reveals that the incorporation of BaSnO
3
is conducive to the enhancement of insulation ability and breakdown strength. Additionally, great thermal stability (Δ
W
r
|
doi_str_mv | 10.1007/s10853-021-06075-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513414817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513414817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4a98d9bf05b44a6fcf9beecb87f4601b8a349d44bf3cc40510f92a6a27f42523</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYi-gKsmrou3P_O3FII_CYEFuK6dzi0OgRlsh0R2voNv6JNYwcSdq5uce87JyUfINYcBB8huA4c8kQwEZ5BClrD3E9LjSSaZykGekh6AEEyolJ-TixBWAJBkgvfIy7h5NY3FimKDfrmnoWu9WSLd-naLvqsx0LqhazQVcx6RTs20nMmvj8-5h0E2rGEgFvVBGJp5M5O0Q98Yv6cWvdnU9pKcObMOePV7--T5frwYPbLJ7OFpdDdhVvKiY0aZIq-K0kFSKmVSZ11RItoyz5xKgZe5kaqolCqdtFZBwsEVwqRGxL9IhOyTm2NvHP62w9DpVbuLS9ZBi4RLxVXOs-gSR5f1bQgend76ehPnag76h6Q-ktSRpD6Q1O8xJI-hEM3NEv1f9T-pbxQZd7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513414817</pqid></control><display><type>article</type><title>Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic</title><source>SpringerLink Journals</source><creator>Li, Siyi ; Shi, Peng ; Zhu, Xiaopei ; Yang, Bian ; Zhang, Xiaoxiao ; Kang, Ruirui ; Liu, Qida ; Gao, Yangfei ; Sun, Haonan ; Lou, Xiaojie</creator><creatorcontrib>Li, Siyi ; Shi, Peng ; Zhu, Xiaopei ; Yang, Bian ; Zhang, Xiaoxiao ; Kang, Ruirui ; Liu, Qida ; Gao, Yangfei ; Sun, Haonan ; Lou, Xiaojie</creatorcontrib><description>The urgent requirement of environment-friendly materials with excellent energy storage performance for pulse power systems has sparked considerable research on lead-free ceramics. In this work, a new lead-free 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramic with high recoverable energy storage density (
W
r
= 3.51 J/cm
3
) and decent energy storage efficiency (
η
= 70.85%) has been obtained. In particular, these ceramics exhibit an ultrahigh breakdown strength of 402 kV/cm due to the dense microstructure and small grain size. The impedance analysis also reveals that the incorporation of BaSnO
3
is conducive to the enhancement of insulation ability and breakdown strength. Additionally, great thermal stability (Δ
W
r
< 10% over 20–120 °C at 200 kV/cm) and fatigue resistance (Δ
W
r
< 1% after 120,000 electrical cycles at 200 kV/cm) are observed, indicating that the 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramics have promising application prospect for high-temperature energy storage devices in pulse power applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06075-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium stannate ; Breakdown ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electric power systems ; Energy Materials ; Energy storage ; Fatigue strength ; Grain size ; High temperature ; Insulation ; Lead free ; Materials Science ; Polymer Sciences ; Solid Mechanics ; Thermal stability</subject><ispartof>Journal of materials science, 2021-07, Vol.56 (20), p.11922-11931</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a4a98d9bf05b44a6fcf9beecb87f4601b8a349d44bf3cc40510f92a6a27f42523</citedby><cites>FETCH-LOGICAL-c319t-a4a98d9bf05b44a6fcf9beecb87f4601b8a349d44bf3cc40510f92a6a27f42523</cites><orcidid>0000-0002-0603-8451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06075-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06075-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Siyi</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Zhu, Xiaopei</creatorcontrib><creatorcontrib>Yang, Bian</creatorcontrib><creatorcontrib>Zhang, Xiaoxiao</creatorcontrib><creatorcontrib>Kang, Ruirui</creatorcontrib><creatorcontrib>Liu, Qida</creatorcontrib><creatorcontrib>Gao, Yangfei</creatorcontrib><creatorcontrib>Sun, Haonan</creatorcontrib><creatorcontrib>Lou, Xiaojie</creatorcontrib><title>Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The urgent requirement of environment-friendly materials with excellent energy storage performance for pulse power systems has sparked considerable research on lead-free ceramics. In this work, a new lead-free 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramic with high recoverable energy storage density (
W
r
= 3.51 J/cm
3
) and decent energy storage efficiency (
η
= 70.85%) has been obtained. In particular, these ceramics exhibit an ultrahigh breakdown strength of 402 kV/cm due to the dense microstructure and small grain size. The impedance analysis also reveals that the incorporation of BaSnO
3
is conducive to the enhancement of insulation ability and breakdown strength. Additionally, great thermal stability (Δ
W
r
< 10% over 20–120 °C at 200 kV/cm) and fatigue resistance (Δ
W
r
< 1% after 120,000 electrical cycles at 200 kV/cm) are observed, indicating that the 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramics have promising application prospect for high-temperature energy storage devices in pulse power applications.</description><subject>Barium stannate</subject><subject>Breakdown</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electric power systems</subject><subject>Energy Materials</subject><subject>Energy storage</subject><subject>Fatigue strength</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Insulation</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Thermal stability</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1OAjEUhRujiYi-gKsmrou3P_O3FII_CYEFuK6dzi0OgRlsh0R2voNv6JNYwcSdq5uce87JyUfINYcBB8huA4c8kQwEZ5BClrD3E9LjSSaZykGekh6AEEyolJ-TixBWAJBkgvfIy7h5NY3FimKDfrmnoWu9WSLd-naLvqsx0LqhazQVcx6RTs20nMmvj8-5h0E2rGEgFvVBGJp5M5O0Q98Yv6cWvdnU9pKcObMOePV7--T5frwYPbLJ7OFpdDdhVvKiY0aZIq-K0kFSKmVSZ11RItoyz5xKgZe5kaqolCqdtFZBwsEVwqRGxL9IhOyTm2NvHP62w9DpVbuLS9ZBi4RLxVXOs-gSR5f1bQgend76ehPnag76h6Q-ktSRpD6Q1O8xJI-hEM3NEv1f9T-pbxQZd7I</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Li, Siyi</creator><creator>Shi, Peng</creator><creator>Zhu, Xiaopei</creator><creator>Yang, Bian</creator><creator>Zhang, Xiaoxiao</creator><creator>Kang, Ruirui</creator><creator>Liu, Qida</creator><creator>Gao, Yangfei</creator><creator>Sun, Haonan</creator><creator>Lou, Xiaojie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0603-8451</orcidid></search><sort><creationdate>20210701</creationdate><title>Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic</title><author>Li, Siyi ; Shi, Peng ; Zhu, Xiaopei ; Yang, Bian ; Zhang, Xiaoxiao ; Kang, Ruirui ; Liu, Qida ; Gao, Yangfei ; Sun, Haonan ; Lou, Xiaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4a98d9bf05b44a6fcf9beecb87f4601b8a349d44bf3cc40510f92a6a27f42523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium stannate</topic><topic>Breakdown</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electric power systems</topic><topic>Energy Materials</topic><topic>Energy storage</topic><topic>Fatigue strength</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Insulation</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Siyi</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Zhu, Xiaopei</creatorcontrib><creatorcontrib>Yang, Bian</creatorcontrib><creatorcontrib>Zhang, Xiaoxiao</creatorcontrib><creatorcontrib>Kang, Ruirui</creatorcontrib><creatorcontrib>Liu, Qida</creatorcontrib><creatorcontrib>Gao, Yangfei</creatorcontrib><creatorcontrib>Sun, Haonan</creatorcontrib><creatorcontrib>Lou, Xiaojie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Siyi</au><au>Shi, Peng</au><au>Zhu, Xiaopei</au><au>Yang, Bian</au><au>Zhang, Xiaoxiao</au><au>Kang, Ruirui</au><au>Liu, Qida</au><au>Gao, Yangfei</au><au>Sun, Haonan</au><au>Lou, Xiaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>56</volume><issue>20</issue><spage>11922</spage><epage>11931</epage><pages>11922-11931</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The urgent requirement of environment-friendly materials with excellent energy storage performance for pulse power systems has sparked considerable research on lead-free ceramics. In this work, a new lead-free 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramic with high recoverable energy storage density (
W
r
= 3.51 J/cm
3
) and decent energy storage efficiency (
η
= 70.85%) has been obtained. In particular, these ceramics exhibit an ultrahigh breakdown strength of 402 kV/cm due to the dense microstructure and small grain size. The impedance analysis also reveals that the incorporation of BaSnO
3
is conducive to the enhancement of insulation ability and breakdown strength. Additionally, great thermal stability (Δ
W
r
< 10% over 20–120 °C at 200 kV/cm) and fatigue resistance (Δ
W
r
< 1% after 120,000 electrical cycles at 200 kV/cm) are observed, indicating that the 0.90(0.80NaNbO
3
–0.20Sr
0.7
Bi
0.2
TiO
3
)–0.10BaSnO
3
ceramics have promising application prospect for high-temperature energy storage devices in pulse power applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06075-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0603-8451</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-07, Vol.56 (20), p.11922-11931 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2513414817 |
source | SpringerLink Journals |
subjects | Barium stannate Breakdown Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electric power systems Energy Materials Energy storage Fatigue strength Grain size High temperature Insulation Lead free Materials Science Polymer Sciences Solid Mechanics Thermal stability |
title | Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20energy%20storage%20properties%20in%20lead-free%20NaNbO3%E2%80%93Sr0.7Bi0.2TiO3%E2%80%93BaSnO3%20ternary%20ceramic&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Siyi&rft.date=2021-07-01&rft.volume=56&rft.issue=20&rft.spage=11922&rft.epage=11931&rft.pages=11922-11931&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06075-x&rft_dat=%3Cproquest_cross%3E2513414817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513414817&rft_id=info:pmid/&rfr_iscdi=true |