The Effect of Efficient Messaging and Input Variability on Neural-Agent Iterated Language Learning

Natural languages display a trade-off among different strategies to convey syntactic structure, such as word order or inflection. This trade-off, however, has not appeared in recent simulations of iterated language learning with neural network agents (Chaabouni et al., 2019b). We re-evaluate this re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Lian, Yuchen, Bisazza, Arianna, Verhoef, Tessa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural languages display a trade-off among different strategies to convey syntactic structure, such as word order or inflection. This trade-off, however, has not appeared in recent simulations of iterated language learning with neural network agents (Chaabouni et al., 2019b). We re-evaluate this result in light of three factors that play an important role in comparable experiments from the Language Evolution field: (i) speaker bias towards efficient messaging, (ii) non systematic input languages, and (iii) learning bottleneck. Our simulations show that neural agents mainly strive to maintain the utterance type distribution observed during learning, instead of developing a more efficient or systematic language.
ISSN:2331-8422