Automatic Detection of Shield Tunnel Leakages Based on Terrestrial Mobile LiDAR Intensity Images Using Deep Learning

Water leakages are very important signals that characterize the serious potential structural damages or flaws in shield tunnels. Automatic, timely, and accurate detection of water leakages is of great significance to the safe operation and maintenance for shield tunnels. However, existing methods (e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.55300-55310
Hauptverfasser: Cheng, Xiaolong, Hu, Xuhang, Tan, Kai, Wang, Lingwen, Yang, Lingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water leakages are very important signals that characterize the serious potential structural damages or flaws in shield tunnels. Automatic, timely, and accurate detection of water leakages is of great significance to the safe operation and maintenance for shield tunnels. However, existing methods (e.g., passive optical images) are highly limited by the confined spaces and dim light conditions in shield tunnels. This paper proposes a new method that uses the intensity images of terrestrial mobile LiDAR (Light Detection and Ranging) for automatic leakage detection in shield tunnels based on deep learning. A self-developed terrestrial mobile LiDAR system (Faro Focus X330) are used to simultaneously obtain the point clouds and intensity information of the shield tunnels. The original intensity data are corrected for the distance effect to generate intensity images. A improved Fully Convolutional Network (FCN) based VGG-19 that is a network structure in deep learning is constructed to achieve accurate tunnel leakage detection based on intensity images. The results show that the proposed method can rapidly and accurately detect leakages in shield tunnels and the leakage detection results are not affected by the tunnel attachments (e.g., bolt holes, cables, and metal facilities). The error rate and segmentation speed are 4.8% and 0.6 s, respectively.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3070813