Eventually non-decreasing codimensions of ∗-identities

Let A be a PI-algebra. If A is an associative algebra, the sequence of codimensions c n ( A ) , n = 1 , 2 , … , of A is asymptotically non-decreasing. For the non-associative case, there are examples of PI-algebras whose sequence of codimensions is not eventually non-decreasing. For a associative PI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2021-04, Vol.116 (4), p.413-421
Hauptverfasser: Shestakov, I., Zaicev, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a PI-algebra. If A is an associative algebra, the sequence of codimensions c n ( A ) , n = 1 , 2 , … , of A is asymptotically non-decreasing. For the non-associative case, there are examples of PI-algebras whose sequence of codimensions is not eventually non-decreasing. For a associative PI-algebra A with involution ∗ : A → A , it was recently shown that its sequence of ∗ -codimensions c n ∗ ( A ) , n = 1 , 2 , … , is also asymptotically non-decreasing. In the present paper, we construct a non-associative algebra whose sequence of ∗ -codimensions is not eventually non-decreasing.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-020-01567-9