Automatic Deception Detection using Multiple Speech and Language Communicative Descriptors in Dialogs

While deceptive behaviors are a natural part of human life, it is well known that human is generally bad at detecting deception. In this study, we present an automatic deception detection framework by comprehensively integrating prior domain knowledge in deceptive behavior understanding. Specificall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APSIPA transactions on signal and information processing 2021, Vol.10 (1)
Hauptverfasser: Chou, Huang-Cheng, Liu, Yi-Wen, Lee, Chi-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While deceptive behaviors are a natural part of human life, it is well known that human is generally bad at detecting deception. In this study, we present an automatic deception detection framework by comprehensively integrating prior domain knowledge in deceptive behavior understanding. Specifically, we compute acoustics, textual information, implicatures with non-verbal behaviors, and conversational temporal dynamics for improving automatic deception detection in dialogs. The proposed model reaches start-of-the-art performance on the Daily Deceptive Dialogues corpus of Mandarin (DDDM) database, 80.61% unweighted accuracy recall in deception recognition. In the further analyses, we reveal that (i) the deceivers’ deception behaviors can be observed from the interrogators’ behaviors in the conversational temporal dynamics features and (ii) some of the acoustic features (e.g. loudness and MFCC) and textual features are significant and effective indicators to detect deception behaviors.
ISSN:2048-7703
2048-7703
DOI:10.1017/ATSIP.2021.6