Design Enhancement and Thermal Analysis of Disc Brake

In automobiles, the function of disc brakes is controlled by jamming the brake pads opposed to a rotary disc that is usually attached to a wheel. A composite material set is preferred to manufacture the brake pads. This braking process produces frictional forces which cause deceleration and eventual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2021-02, Vol.1059 (1), p.12045
Hauptverfasser: Roshan Rino, B, Pranesh Kumar, M, Velmurugan, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In automobiles, the function of disc brakes is controlled by jamming the brake pads opposed to a rotary disc that is usually attached to a wheel. A composite material set is preferred to manufacture the brake pads. This braking process produces frictional forces which cause deceleration and eventually stops the rotation of the disc. The indulgence of the generated heat due to friction is important for successful braking. Changes in temperature of the brake cause radial and axial bend; this variation in shape, in turn, distresses the proper alignment of the pads and the disc. The aim of this paper is to design a brake disc and perform the thermal stress analysis by applying five different materials namely Gray cast iron (GCI), reinforced Ti-composite (TMC),Ti-alloy (Ti-6Al-4V), reinforced Al-Cu alloy(AMC 2), and reinforced Al-composite(AMC 1).The modelling and analysis of the disc brake are achieved with the aid of SOLIDWORKS and ANSYS software.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/1059/1/012045