A Simulation Model for Macro- and Micro-Fusion Algorithms in the CPU Core

The article discusses the features of modern processor's microarchitecture, the method of instruction's and micro-operation's accelerated execution. The research focuses on the organization of the decoding stage in the CPU core pipeline and Macro- and Micro-fusion algorithms. The Macr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-01, Vol.1740 (1), p.12053
Hauptverfasser: Vishnekov, A V, Ivanova, E M, Stepanov, N A, Shaimov, N D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article discusses the features of modern processor's microarchitecture, the method of instruction's and micro-operation's accelerated execution. The research focuses on the organization of the decoding stage in the CPU core pipeline and Macro- and Micro-fusion algorithms. The Macro- and Micro-fusion mechanisms are defined. A computer simulator has been developed to explore these mechanisms. The developed software has a user-friendly interface, is easy to use, and combines training and research options. The computer simulator demonstrates the sequence of mechanism' s implementation; the resulting macro-or microoperations set after Macro- and Micro-fusion, and also reflects each algorithm features for different processor's families. The software allows you to use either a pre-prepared file with Assembler (x86) code fragments as source data, or enter/change the source code fragments at your request. The main combinations of machine instructions that can be fused into a single macro-operation are considered, as well as instructions that can be decoded into fused micro-operations. The simulator can be useful both for in Computer Science & Engineering students, especially for on-line education and for researchers and General-purpose CPU cores developers.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1740/1/012053