Structural behavior of MRPC beams exposure to riverine simulated circumstances using GFRP and CFRP bars

Reinforced polymer bars could potentially be used with fiber as a strengthening technology in MRPC. The main objective of this paper is to study the influence development of the flexural behavior of MRPC beams after 120 days of virtual corrosion-exposure in riverine simulated circumstances using GFR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2021-02, Vol.1076 (1), p.12103
Hauptverfasser: Wenas, Abeer Hassan, AbdulKareem, Wael Shahadha, Mushatat, Haider Amer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reinforced polymer bars could potentially be used with fiber as a strengthening technology in MRPC. The main objective of this paper is to study the influence development of the flexural behavior of MRPC beams after 120 days of virtual corrosion-exposure in riverine simulated circumstances using GFRP and CFRP bars. Nine beams were tested via a two-point loading method up to failure, 1200 mm long, (200x100mm) cross-section. The water/binder is chosen to be 0.14 by weight. Silica fume was replaced by 8% weight of cement. The dose of superplasticizer used to the total binder weight was 0.41 percent. Three types of flexural reinforcement ratios were used individually per each cross-section; GFRP, CFRP, and traditional steel rebar, with a nominal diameter of 10 mm. The compressive strength of MRPC is 80 MPa. The experimental evidence indicates that GFRP and CFRP bars used with MRPC have higher tensile strength and anti-corroded bars. Also, the load results indicate that CFRP bars are more efficient than GFRP bars and steel rebar. Finally, the behavior of MRPC beams neither GFRP and CFRP bars submerged in Tigris river water did not chemically affect. The author recommended replacing steel rebar with GFRP and CFRP bars to improved structural behavior.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/1076/1/012103