Effect of annealing hold time on thickness and optical properties of barium titanate solar cell material

The development of perovskite-based solar cells has recently attracted the attention of many researchers because the efficiency value increases rapidly in a short span of time. Third generation solar cells have the potential to achieve Shockley-Queisser Limit of 31% for single energy bandgap solar c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-02, Vol.1816 (1), p.12062
Hauptverfasser: Cahyono, Y, Ramadhanti, S, Rasmianti, Dewi, Y N K, Asrori, M Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of perovskite-based solar cells has recently attracted the attention of many researchers because the efficiency value increases rapidly in a short span of time. Third generation solar cells have the potential to achieve Shockley-Queisser Limit of 31% for single energy bandgap solar cells. Besides that, this solar cell technology is economically very promising because the manufacturing costs are cheaper. The main drawback of this solar cell is its low stability (lifetime), which is caused by degradation over its lifetime. In addition, most of the high efficiency perovskite-based solar cells still use lead (Pb), so they are not environmentally friendly. Another alternative perovskite material is required. One promising material is Barium Titanate (BaTiO 3 ). As a material for solar cells, not much research has been done. BaTiO 3 film has been successfully made, which is then given annealing treatment at temperature of 500 °C, with annealing time of 30 minutes, 60 minutes, 90 minutes, and 120 minutes. In general, increasing the annealing time increases absorbance, decreases film thickness, decreases energy bandgap, and tends to reduce grain size of film. Energy bandgap tends to decrease with the increasing grain size. The grain size of film decreases with the decreasing thickness. More in-depth characterization and analysis are needed, especially those related to microstructure analysis.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1816/1/012062