Bayesian Computational Methods of the Logistic Regression Model
In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Mont...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-02, Vol.1804 (1), p.12073 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1804/1/012073 |